attnode/Firmware/lib/RFM69/RFM69_f.cpp
2019-10-04 12:46:02 +02:00

495 lines
19 KiB
C++

// **********************************************************************************
// Driver definition for HopeRF RFM69W/RFM69HW/RFM69CW/RFM69HCW, Semtech SX1231/1231H
// **********************************************************************************
// Copyright Felix Rusu (2014), felix@lowpowerlab.com
// http://lowpowerlab.com/
// **********************************************************************************
// License
// **********************************************************************************
// This program is free software; you can redistribute it
// and/or modify it under the terms of the GNU General
// Public License as published by the Free Software
// Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will
// be useful, but WITHOUT ANY WARRANTY; without even the
// implied warranty of MERCHANTABILITY or FITNESS FOR A
// PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General
// Public License along with this program.
// If not, see <http://www.gnu.org/licenses/>.
//
// Licence can be viewed at
// http://www.gnu.org/licenses/gpl-3.0.txt
//
// Please maintain this license information along with authorship
// and copyright notices in any redistribution of this code
// **********************************************************************************
#include <RFM69_f.h>
#include <RFM69registers.h>
#include <tinySPI.h>
volatile byte RFM69::DATA[RF69_MAX_DATA_LEN];
volatile byte RFM69::_mode; // current transceiver state
volatile byte RFM69::DATALEN;
volatile byte RFM69::SENDERID;
volatile byte RFM69::TARGETID; //should match _address
volatile byte RFM69::PAYLOADLEN;
volatile byte RFM69::ACK_REQUESTED;
volatile byte RFM69::ACK_RECEIVED; /// Should be polled immediately after sending a packet with ACK request
volatile int RFM69::RSSI; //most accurate RSSI during reception (closest to the reception)
RFM69* RFM69::selfPointer;
bool RFM69::initialize(byte freqBand, byte nodeID, byte networkID)
{
const byte CONFIG[][2] =
{
/* 0x01 */ { REG_OPMODE, RF_OPMODE_SEQUENCER_ON | RF_OPMODE_LISTEN_OFF | RF_OPMODE_STANDBY },
/* 0x02 */ { REG_DATAMODUL, RF_DATAMODUL_DATAMODE_PACKET | RF_DATAMODUL_MODULATIONTYPE_FSK | RF_DATAMODUL_MODULATIONSHAPING_00 }, //no shaping
/* 0x03 */ { REG_BITRATEMSB, RF_BITRATEMSB_55555}, //default:4.8 KBPS
/* 0x04 */ { REG_BITRATELSB, RF_BITRATELSB_55555},
/* 0x05 */ { REG_FDEVMSB, RF_FDEVMSB_50000}, //default:5khz, (FDEV + BitRate/2 <= 500Khz)
/* 0x06 */ { REG_FDEVLSB, RF_FDEVLSB_50000},
/* 0x07 */ { REG_FRFMSB, (freqBand==RF69_315MHZ ? RF_FRFMSB_315 : (freqBand==RF69_433MHZ ? RF_FRFMSB_433 : (freqBand==RF69_868MHZ ? RF_FRFMSB_868 : RF_FRFMSB_915))) },
/* 0x08 */ { REG_FRFMID, (freqBand==RF69_315MHZ ? RF_FRFMID_315 : (freqBand==RF69_433MHZ ? RF_FRFMID_433 : (freqBand==RF69_868MHZ ? RF_FRFMID_868 : RF_FRFMID_915))) },
/* 0x09 */ { REG_FRFLSB, (freqBand==RF69_315MHZ ? RF_FRFLSB_315 : (freqBand==RF69_433MHZ ? RF_FRFLSB_433 : (freqBand==RF69_868MHZ ? RF_FRFLSB_868 : RF_FRFLSB_915))) },
// looks like PA1 and PA2 are not implemented on RFM69W, hence the max output power is 13dBm
// +17dBm and +20dBm are possible on RFM69HW
// +13dBm formula: Pout=-18+OutputPower (with PA0 or PA1**)
// +17dBm formula: Pout=-14+OutputPower (with PA1 and PA2)**
// +20dBm formula: Pout=-11+OutputPower (with PA1 and PA2)** and high power PA settings (section 3.3.7 in datasheet)
///* 0x11 */ { REG_PALEVEL, RF_PALEVEL_PA0_ON | RF_PALEVEL_PA1_OFF | RF_PALEVEL_PA2_OFF | RF_PALEVEL_OUTPUTPOWER_11111},
///* 0x13 */ { REG_OCP, RF_OCP_ON | RF_OCP_TRIM_95 }, //over current protection (default is 95mA)
// RXBW defaults are { REG_RXBW, RF_RXBW_DCCFREQ_010 | RF_RXBW_MANT_24 | RF_RXBW_EXP_5} (RxBw: 10.4khz)
/* 0x19 */ { REG_RXBW, RF_RXBW_DCCFREQ_010 | RF_RXBW_MANT_16 | RF_RXBW_EXP_2 }, //(BitRate < 2 * RxBw)
//for BR-19200: //* 0x19 */ { REG_RXBW, RF_RXBW_DCCFREQ_010 | RF_RXBW_MANT_24 | RF_RXBW_EXP_3 },
/* 0x25 */ { REG_DIOMAPPING1, RF_DIOMAPPING1_DIO0_01 }, //DIO0 is the only IRQ we're using
/* 0x29 */ { REG_RSSITHRESH, 220 }, //must be set to dBm = (-Sensitivity / 2) - default is 0xE4=228 so -114dBm
///* 0x2d */ { REG_PREAMBLELSB, RF_PREAMBLESIZE_LSB_VALUE } // default 3 preamble bytes 0xAAAAAA
/* 0x2e */ { REG_SYNCCONFIG, RF_SYNC_ON | RF_SYNC_FIFOFILL_AUTO | RF_SYNC_SIZE_2 | RF_SYNC_TOL_0 },
/* 0x2f */ { REG_SYNCVALUE1, 0x2D }, //attempt to make this compatible with sync1 byte of RFM12B lib
/* 0x30 */ { REG_SYNCVALUE2, networkID }, //NETWORK ID
/* 0x37 */ { REG_PACKETCONFIG1, RF_PACKET1_FORMAT_VARIABLE | RF_PACKET1_DCFREE_OFF | RF_PACKET1_CRC_ON | RF_PACKET1_CRCAUTOCLEAR_ON | RF_PACKET1_ADRSFILTERING_OFF },
/* 0x38 */ { REG_PAYLOADLENGTH, 66 }, //in variable length mode: the max frame size, not used in TX
//* 0x39 */ { REG_NODEADRS, nodeID }, //turned off because we're not using address filtering
/* 0x3C */ { REG_FIFOTHRESH, RF_FIFOTHRESH_TXSTART_FIFONOTEMPTY | RF_FIFOTHRESH_VALUE }, //TX on FIFO not empty
/* 0x3d */ { REG_PACKETCONFIG2, RF_PACKET2_RXRESTARTDELAY_2BITS | RF_PACKET2_AUTORXRESTART_ON | RF_PACKET2_AES_OFF }, //RXRESTARTDELAY must match transmitter PA ramp-down time (bitrate dependent)
//for BR-19200: //* 0x3d */ { REG_PACKETCONFIG2, RF_PACKET2_RXRESTARTDELAY_NONE | RF_PACKET2_AUTORXRESTART_ON | RF_PACKET2_AES_OFF }, //RXRESTARTDELAY must match transmitter PA ramp-down time (bitrate dependent)
//* 0x6F */ { REG_TESTDAGC, RF_DAGC_CONTINUOUS }, // run DAGC continuously in RX mode
/* 0x6F */ { REG_TESTDAGC, RF_DAGC_IMPROVED_LOWBETA0 }, // run DAGC continuously in RX mode, recommended default for AfcLowBetaOn=0
{255, 0}
};
pinMode(_slaveSelectPin, OUTPUT);
digitalWrite(_slaveSelectPin, HIGH);
SPI.begin();
do writeReg(REG_SYNCVALUE1, 0xaa); while (readReg(REG_SYNCVALUE1) != 0xaa);
do writeReg(REG_SYNCVALUE1, 0x55); while (readReg(REG_SYNCVALUE1) != 0x55);
for (byte i = 0; CONFIG[i][0] != 255; i++)
writeReg(CONFIG[i][0], CONFIG[i][1]);
// Encryption is persistent between resets and can trip you up during debugging.
// Disable it during initialization so we always start from a known state.
encrypt(0);
setHighPower(_isRFM69HW); //called regardless if it's a RFM69W or RFM69HW
setMode(RF69_MODE_STANDBY);
while ((readReg(REG_IRQFLAGS1) & RF_IRQFLAGS1_MODEREADY) == 0x00); // Wait for ModeReady
attachInterrupt(_interruptNum, RFM69::isr0, RISING);
selfPointer = this;
_address = nodeID;
return true;
}
//return the frequency (in Hz)
uint32_t RFM69::getFrequency()
{
return RF69_FSTEP * (((uint32_t)readReg(REG_FRFMSB)<<16) + ((uint16_t)readReg(REG_FRFMID)<<8) + readReg(REG_FRFLSB));
}
//set the frequency (in Hz)
void RFM69::setFrequency(uint32_t freqHz)
{
//TODO: p38 hopping sequence may need to be followed in some cases
freqHz /= RF69_FSTEP; //divide down by FSTEP to get FRF
writeReg(REG_FRFMSB, freqHz >> 16);
writeReg(REG_FRFMID, freqHz >> 8);
writeReg(REG_FRFLSB, freqHz);
}
void RFM69::setMode(byte newMode)
{
if (newMode == _mode) return; //TODO: can remove this?
switch (newMode) {
case RF69_MODE_TX:
writeReg(REG_OPMODE, (readReg(REG_OPMODE) & 0xE3) | RF_OPMODE_TRANSMITTER);
if (_isRFM69HW) setHighPowerRegs(true);
break;
case RF69_MODE_RX:
writeReg(REG_OPMODE, (readReg(REG_OPMODE) & 0xE3) | RF_OPMODE_RECEIVER);
if (_isRFM69HW) setHighPowerRegs(false);
break;
case RF69_MODE_SYNTH:
writeReg(REG_OPMODE, (readReg(REG_OPMODE) & 0xE3) | RF_OPMODE_SYNTHESIZER);
break;
case RF69_MODE_STANDBY:
writeReg(REG_OPMODE, (readReg(REG_OPMODE) & 0xE3) | RF_OPMODE_STANDBY);
break;
case RF69_MODE_SLEEP:
writeReg(REG_OPMODE, (readReg(REG_OPMODE) & 0xE3) | RF_OPMODE_SLEEP);
break;
default: return;
}
// we are using packet mode, so this check is not really needed
// but waiting for mode ready is necessary when going from sleep because the FIFO may not be immediately available from previous mode
while (_mode == RF69_MODE_SLEEP && (readReg(REG_IRQFLAGS1) & RF_IRQFLAGS1_MODEREADY) == 0x00); // Wait for ModeReady
_mode = newMode;
}
void RFM69::sleep() {
setMode(RF69_MODE_SLEEP);
}
void RFM69::setAddress(byte addr)
{
_address = addr;
writeReg(REG_NODEADRS, _address);
}
void RFM69::setNetwork(byte networkID)
{
writeReg(REG_SYNCVALUE2, networkID);
}
// set output power: 0=min, 31=max
// this results in a "weaker" transmitted signal, and directly results in a lower RSSI at the receiver
void RFM69::setPowerLevel(byte powerLevel)
{
_powerLevel = powerLevel;
writeReg(REG_PALEVEL, (readReg(REG_PALEVEL) & 0xE0) | (_powerLevel > 31 ? 31 : _powerLevel));
}
bool RFM69::canSend()
{
if (_mode == RF69_MODE_RX && PAYLOADLEN == 0 && readRSSI() < CSMA_LIMIT) //if signal stronger than -100dBm is detected assume channel activity
{
setMode(RF69_MODE_STANDBY);
return true;
}
return false;
}
void RFM69::send(byte toAddress, const void* buffer, byte bufferSize, bool requestACK)
{
writeReg(REG_PACKETCONFIG2, (readReg(REG_PACKETCONFIG2) & 0xFB) | RF_PACKET2_RXRESTART); // avoid RX deadlocks
unsigned long now = millis();
while (!canSend() && millis()-now < RF69_CSMA_LIMIT_MS) receiveDone();
sendFrame(toAddress, buffer, bufferSize, requestACK, false);
}
// to increase the chance of getting a packet across, call this function instead of send
// and it handles all the ACK requesting/retrying for you :)
// The only twist is that you have to manually listen to ACK requests on the other side and send back the ACKs
// The reason for the semi-automaton is that the lib is ingterrupt driven and
// requires user action to read the received data and decide what to do with it
// replies usually take only 5-8ms at 50kbps@915Mhz
bool RFM69::sendWithRetry(byte toAddress, const void* buffer, byte bufferSize, byte retries, byte retryWaitTime) {
unsigned long sentTime;
for (byte i=0; i<=retries; i++)
{
send(toAddress, buffer, bufferSize, true);
sentTime = millis();
while (millis()-sentTime<retryWaitTime)
{
if (ACKReceived(toAddress))
{
//Serial.print(" ~ms:");Serial.print(millis()-sentTime);
return true;
}
}
//Serial.print(" RETRY#");Serial.println(i+1);
}
return false;
}
/// Should be polled immediately after sending a packet with ACK request
bool RFM69::ACKReceived(byte fromNodeID) {
if (receiveDone())
return (SENDERID == fromNodeID || fromNodeID == RF69_BROADCAST_ADDR) && ACK_RECEIVED;
return false;
}
//check whether an ACK was requested in the last received packet (non-broadcasted packet)
bool RFM69::ACKRequested() {
return ACK_REQUESTED && (TARGETID != RF69_BROADCAST_ADDR);
}
/// Should be called immediately after reception in case sender wants ACK
void RFM69::sendACK(const void* buffer, byte bufferSize) {
byte sender = SENDERID;
int _RSSI = RSSI; //save payload received RSSI value
writeReg(REG_PACKETCONFIG2, (readReg(REG_PACKETCONFIG2) & 0xFB) | RF_PACKET2_RXRESTART); // avoid RX deadlocks
unsigned long now = millis();
while (!canSend() && millis()-now < RF69_CSMA_LIMIT_MS) receiveDone();
sendFrame(sender, buffer, bufferSize, false, true);
RSSI = _RSSI; //restore payload RSSI
}
void RFM69::sendFrame(byte toAddress, const void* buffer, byte bufferSize, bool requestACK, bool sendACK)
{
setMode(RF69_MODE_STANDBY); //turn off receiver to prevent reception while filling fifo
while ((readReg(REG_IRQFLAGS1) & RF_IRQFLAGS1_MODEREADY) == 0x00); // Wait for ModeReady
writeReg(REG_DIOMAPPING1, RF_DIOMAPPING1_DIO0_00); // DIO0 is "Packet Sent"
if (bufferSize > RF69_MAX_DATA_LEN) bufferSize = RF69_MAX_DATA_LEN;
//write to FIFO
select();
SPI.transfer(REG_FIFO | 0x80);
SPI.transfer(bufferSize + 3);
SPI.transfer(toAddress);
SPI.transfer(_address);
//control byte
if (sendACK)
SPI.transfer(0x80);
else if (requestACK)
SPI.transfer(0x40);
else SPI.transfer(0x00);
for (byte i = 0; i < bufferSize; i++)
SPI.transfer(((byte*)buffer)[i]);
unselect();
/* no need to wait for transmit mode to be ready since its handled by the radio */
setMode(RF69_MODE_TX);
unsigned long txStart = millis();
while (digitalRead(_interruptPin) == 0 && millis()-txStart < RF69_TX_LIMIT_MS); //wait for DIO0 to turn HIGH signalling transmission finish
//while (readReg(REG_IRQFLAGS2) & RF_IRQFLAGS2_PACKETSENT == 0x00); // Wait for ModeReady
setMode(RF69_MODE_STANDBY);
}
void RFM69::interruptHandler() {
if (_mode == RF69_MODE_RX && (readReg(REG_IRQFLAGS2) & RF_IRQFLAGS2_PAYLOADREADY))
{
//RSSI = readRSSI();
setMode(RF69_MODE_STANDBY);
select();
SPI.transfer(REG_FIFO & 0x7f);
PAYLOADLEN = SPI.transfer(0);
PAYLOADLEN = PAYLOADLEN > 66 ? 66 : PAYLOADLEN; //precaution
TARGETID = SPI.transfer(0);
if(!(_promiscuousMode || TARGETID==_address || TARGETID==RF69_BROADCAST_ADDR) //match this node's address, or broadcast address or anything in promiscuous mode
|| PAYLOADLEN < 3) //address situation could receive packets that are malformed and don't fit this libraries extra fields
{
PAYLOADLEN = 0;
unselect();
receiveBegin();
//digitalWrite(4, 0);
return;
}
DATALEN = PAYLOADLEN - 3;
SENDERID = SPI.transfer(0);
byte CTLbyte = SPI.transfer(0);
ACK_RECEIVED = CTLbyte & 0x80; //extract ACK-requested flag
ACK_REQUESTED = CTLbyte & 0x40; //extract ACK-received flag
for (byte i= 0; i < DATALEN; i++)
{
DATA[i] = SPI.transfer(0);
}
if (DATALEN<RF69_MAX_DATA_LEN) DATA[DATALEN]=0; //add null at end of string
unselect();
setMode(RF69_MODE_RX);
}
RSSI = readRSSI();
//digitalWrite(4, 0);
}
void RFM69::isr0() { selfPointer->interruptHandler(); }
void RFM69::receiveBegin() {
DATALEN = 0;
SENDERID = 0;
TARGETID = 0;
PAYLOADLEN = 0;
ACK_REQUESTED = 0;
ACK_RECEIVED = 0;
RSSI = 0;
if (readReg(REG_IRQFLAGS2) & RF_IRQFLAGS2_PAYLOADREADY)
writeReg(REG_PACKETCONFIG2, (readReg(REG_PACKETCONFIG2) & 0xFB) | RF_PACKET2_RXRESTART); // avoid RX deadlocks
writeReg(REG_DIOMAPPING1, RF_DIOMAPPING1_DIO0_01); //set DIO0 to "PAYLOADREADY" in receive mode
setMode(RF69_MODE_RX);
}
bool RFM69::receiveDone() {
// ATOMIC_BLOCK(ATOMIC_FORCEON)
// {
noInterrupts(); //re-enabled in unselect() via setMode() or via receiveBegin()
if (_mode == RF69_MODE_RX && PAYLOADLEN>0)
{
setMode(RF69_MODE_STANDBY); //enables interrupts
return true;
}
else if (_mode == RF69_MODE_RX) //already in RX no payload yet
{
interrupts(); //explicitly re-enable interrupts
return false;
}
receiveBegin();
return false;
//}
}
// To enable encryption: radio.encrypt("ABCDEFGHIJKLMNOP");
// To disable encryption: radio.encrypt(null) or radio.encrypt(0)
// KEY HAS TO BE 16 bytes !!!
void RFM69::encrypt(const char* key) {
setMode(RF69_MODE_STANDBY);
if (key!=0)
{
select();
SPI.transfer(REG_AESKEY1 | 0x80);
for (byte i = 0; i<16; i++)
SPI.transfer(key[i]);
unselect();
}
writeReg(REG_PACKETCONFIG2, (readReg(REG_PACKETCONFIG2) & 0xFE) | (key ? 1 : 0));
}
int RFM69::readRSSI(bool forceTrigger) {
int rssi = 0;
if (forceTrigger)
{
//RSSI trigger not needed if DAGC is in continuous mode
writeReg(REG_RSSICONFIG, RF_RSSI_START);
while ((readReg(REG_RSSICONFIG) & RF_RSSI_DONE) == 0x00); // Wait for RSSI_Ready
}
rssi = -readReg(REG_RSSIVALUE);
rssi >>= 1;
return rssi;
}
byte RFM69::readReg(byte addr)
{
select();
SPI.transfer(addr & 0x7F);
byte regval = SPI.transfer(0);
unselect();
return regval;
}
void RFM69::writeReg(byte addr, byte value)
{
select();
SPI.transfer(addr | 0x80);
SPI.transfer(value);
unselect();
}
/// Select the transceiver
void RFM69::select() {
noInterrupts();
#if defined(__AVR_ATtiny84__) || defined(__AVR_ATtiny44__) // tiny doesn't set SPI settings like this
#else // set SPI settings if not on tiny
// save current SPI settings
_SPCR = SPCR;
_SPSR = SPSR;
SPCR = (SPCR & ~0x0C) | 0x00; // SPI.setDataMode(SPI_MODE0); (last hex number is the mode)
SPCR &= ~(_BV(DORD)); // this is for MSBFIRST; LSBFIRST would be SPCR |= _BV(DORD);
// clock divider: look this up in the datasheet
// DIV4: use 0x00 here: V
// DIV2: use 0x04 here: v
SPCR = (SPCR & ~0x03) | (0x00 & 0x03);
SPSR = (SPSR & ~0x01) | (0x00 & 0x01);
#endif
digitalWrite(_slaveSelectPin, LOW);
}
/// UNselect the transceiver chip
void RFM69::unselect() {
digitalWrite(_slaveSelectPin, HIGH);
#if defined(__AVR_ATtiny84__) || defined(__AVR_ATtiny44__)
#else
//restore SPI settings to what they were before talking to RFM69
SPCR = _SPCR;
SPSR = _SPSR;
#endif
interrupts();
}
// ON = disable filtering to capture all frames on network
// OFF = enable node+broadcast filtering to capture only frames sent to this/broadcast address
void RFM69::promiscuous(bool onOff) {
_promiscuousMode=onOff;
//writeReg(REG_PACKETCONFIG1, (readReg(REG_PACKETCONFIG1) & 0xF9) | (onOff ? RF_PACKET1_ADRSFILTERING_OFF : RF_PACKET1_ADRSFILTERING_NODEBROADCAST));
}
void RFM69::setHighPower(bool onOff) {
_isRFM69HW = onOff;
writeReg(REG_OCP, _isRFM69HW ? RF_OCP_OFF : RF_OCP_ON);
if (_isRFM69HW) //turning ON
writeReg(REG_PALEVEL, (readReg(REG_PALEVEL) & 0x1F) | RF_PALEVEL_PA1_ON | RF_PALEVEL_PA2_ON); //enable P1 & P2 amplifier stages
else
writeReg(REG_PALEVEL, RF_PALEVEL_PA0_ON | RF_PALEVEL_PA1_OFF | RF_PALEVEL_PA2_OFF | _powerLevel); //enable P0 only
}
void RFM69::setHighPowerRegs(bool onOff) {
writeReg(REG_TESTPA1, onOff ? 0x5D : 0x55);
writeReg(REG_TESTPA2, onOff ? 0x7C : 0x70);
}
void RFM69::setCS(byte newSPISlaveSelect) {
_slaveSelectPin = newSPISlaveSelect;
pinMode(_slaveSelectPin, OUTPUT);
}
//for debugging
void RFM69::readAllRegs()
{
byte regVal;
for (byte regAddr = 1; regAddr <= 0x4F; regAddr++)
{
select();
SPI.transfer(regAddr & 0x7f); // send address + r/w bit
regVal = SPI.transfer(0);
unselect();
Serial.print(regAddr, HEX);
Serial.print(" - ");
Serial.print(regVal,HEX);
Serial.print(" - ");
Serial.println(regVal,BIN);
}
unselect();
}
byte RFM69::readTemperature(byte calFactor) //returns centigrade
{
setMode(RF69_MODE_STANDBY);
writeReg(REG_TEMP1, RF_TEMP1_MEAS_START);
while ((readReg(REG_TEMP1) & RF_TEMP1_MEAS_RUNNING)) Serial.print('*');
return ~readReg(REG_TEMP2) + COURSE_TEMP_COEF + calFactor; //'complement'corrects the slope, rising temp = rising val
} // COURSE_TEMP_COEF puts reading in the ballpark, user can add additional correction
void RFM69::rcCalibration()
{
writeReg(REG_OSC1, RF_OSC1_RCCAL_START);
while ((readReg(REG_OSC1) & RF_OSC1_RCCAL_DONE) == 0x00);
}