/* MHZ19C.cpp - MHZ19C Sensor Library Copyright (c) 2020-2021, Stefan Brand All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include "MHZ19C.h" // Constructor - Inititalize Hardware UART MHZ19C::MHZ19C(void) { Serial.begin(9600); Serial.setTimeout(MHZ19C_READ_TIMEOUT); } void MHZ19C::getSensorData(lora_data &loradata) { write(MHZ19C_CMD_GET_PPM, 0x00); delay(50); uint8_t readBytes = read(); loradata.ppm = 0; if (readBytes > 0) { switch(buffer[1]) { case 0x86: loradata.ppm = (buffer[2]*256) + buffer[3]; break; } } } // Turn Self Calibration Routine On or Off void MHZ19C::setSelfCalibration(bool state) { if (state) { write(0x79, 0xA0); } else { write(0x79, 0x00); } } // Write a Command to the Sensor void MHZ19C::write(uint8_t cmd, uint8_t arg) { uint8_t _cmd[9] = {0xFF, 0x01, cmd, arg, 0x00, 0x00, 0x00, 0x00, 0x00}; uint8_t crc = crc8(_cmd); _cmd[8] = crc; while (Serial.available() > 0) Serial.read(); Serial.write(_cmd, 9); Serial.flush(); } // Read a Sensor Response uint8_t MHZ19C::read() { uint8_t ret = 0; zeroBuffer(); // Read Available Bytes if (Serial.available() > 0) { ret = Serial.readBytes(buffer, MHZ19C_SER_BUF_LEN); } // Check Sync Bit and CRC if (buffer[0] != 0xFF || buffer [8] != crc8(buffer)) return 0; // Return Read Bytes return ret; } // Fill the Internal Buffer with Zeroes void MHZ19C::zeroBuffer() { for (int i=0; i < MHZ19C_SER_BUF_LEN; i++) buffer[i] = 0x00; } // Calculate 8Bit CRC of Messages and Commands uint8_t MHZ19C::crc8(uint8_t *paket){ uint8_t i, checksum = 0x00; for( i = 1; i < 8; i++) checksum += paket[i]; checksum = 0xff - checksum; checksum += 1; return checksum; }