diff --git a/lib/tinyNeoPixel_Static/COPYING b/lib/tinyNeoPixel_Static/COPYING
new file mode 100644
index 0000000..65c5ca8
--- /dev/null
+++ b/lib/tinyNeoPixel_Static/COPYING
@@ -0,0 +1,165 @@
+ GNU LESSER GENERAL PUBLIC LICENSE
+ Version 3, 29 June 2007
+
+ Copyright (C) 2007 Free Software Foundation, Inc.
+ Everyone is permitted to copy and distribute verbatim copies
+ of this license document, but changing it is not allowed.
+
+
+ This version of the GNU Lesser General Public License incorporates
+the terms and conditions of version 3 of the GNU General Public
+License, supplemented by the additional permissions listed below.
+
+ 0. Additional Definitions.
+
+ As used herein, "this License" refers to version 3 of the GNU Lesser
+General Public License, and the "GNU GPL" refers to version 3 of the GNU
+General Public License.
+
+ "The Library" refers to a covered work governed by this License,
+other than an Application or a Combined Work as defined below.
+
+ An "Application" is any work that makes use of an interface provided
+by the Library, but which is not otherwise based on the Library.
+Defining a subclass of a class defined by the Library is deemed a mode
+of using an interface provided by the Library.
+
+ A "Combined Work" is a work produced by combining or linking an
+Application with the Library. The particular version of the Library
+with which the Combined Work was made is also called the "Linked
+Version".
+
+ The "Minimal Corresponding Source" for a Combined Work means the
+Corresponding Source for the Combined Work, excluding any source code
+for portions of the Combined Work that, considered in isolation, are
+based on the Application, and not on the Linked Version.
+
+ The "Corresponding Application Code" for a Combined Work means the
+object code and/or source code for the Application, including any data
+and utility programs needed for reproducing the Combined Work from the
+Application, but excluding the System Libraries of the Combined Work.
+
+ 1. Exception to Section 3 of the GNU GPL.
+
+ You may convey a covered work under sections 3 and 4 of this License
+without being bound by section 3 of the GNU GPL.
+
+ 2. Conveying Modified Versions.
+
+ If you modify a copy of the Library, and, in your modifications, a
+facility refers to a function or data to be supplied by an Application
+that uses the facility (other than as an argument passed when the
+facility is invoked), then you may convey a copy of the modified
+version:
+
+ a) under this License, provided that you make a good faith effort to
+ ensure that, in the event an Application does not supply the
+ function or data, the facility still operates, and performs
+ whatever part of its purpose remains meaningful, or
+
+ b) under the GNU GPL, with none of the additional permissions of
+ this License applicable to that copy.
+
+ 3. Object Code Incorporating Material from Library Header Files.
+
+ The object code form of an Application may incorporate material from
+a header file that is part of the Library. You may convey such object
+code under terms of your choice, provided that, if the incorporated
+material is not limited to numerical parameters, data structure
+layouts and accessors, or small macros, inline functions and templates
+(ten or fewer lines in length), you do both of the following:
+
+ a) Give prominent notice with each copy of the object code that the
+ Library is used in it and that the Library and its use are
+ covered by this License.
+
+ b) Accompany the object code with a copy of the GNU GPL and this license
+ document.
+
+ 4. Combined Works.
+
+ You may convey a Combined Work under terms of your choice that,
+taken together, effectively do not restrict modification of the
+portions of the Library contained in the Combined Work and reverse
+engineering for debugging such modifications, if you also do each of
+the following:
+
+ a) Give prominent notice with each copy of the Combined Work that
+ the Library is used in it and that the Library and its use are
+ covered by this License.
+
+ b) Accompany the Combined Work with a copy of the GNU GPL and this license
+ document.
+
+ c) For a Combined Work that displays copyright notices during
+ execution, include the copyright notice for the Library among
+ these notices, as well as a reference directing the user to the
+ copies of the GNU GPL and this license document.
+
+ d) Do one of the following:
+
+ 0) Convey the Minimal Corresponding Source under the terms of this
+ License, and the Corresponding Application Code in a form
+ suitable for, and under terms that permit, the user to
+ recombine or relink the Application with a modified version of
+ the Linked Version to produce a modified Combined Work, in the
+ manner specified by section 6 of the GNU GPL for conveying
+ Corresponding Source.
+
+ 1) Use a suitable shared library mechanism for linking with the
+ Library. A suitable mechanism is one that (a) uses at run time
+ a copy of the Library already present on the user's computer
+ system, and (b) will operate properly with a modified version
+ of the Library that is interface-compatible with the Linked
+ Version.
+
+ e) Provide Installation Information, but only if you would otherwise
+ be required to provide such information under section 6 of the
+ GNU GPL, and only to the extent that such information is
+ necessary to install and execute a modified version of the
+ Combined Work produced by recombining or relinking the
+ Application with a modified version of the Linked Version. (If
+ you use option 4d0, the Installation Information must accompany
+ the Minimal Corresponding Source and Corresponding Application
+ Code. If you use option 4d1, you must provide the Installation
+ Information in the manner specified by section 6 of the GNU GPL
+ for conveying Corresponding Source.)
+
+ 5. Combined Libraries.
+
+ You may place library facilities that are a work based on the
+Library side by side in a single library together with other library
+facilities that are not Applications and are not covered by this
+License, and convey such a combined library under terms of your
+choice, if you do both of the following:
+
+ a) Accompany the combined library with a copy of the same work based
+ on the Library, uncombined with any other library facilities,
+ conveyed under the terms of this License.
+
+ b) Give prominent notice with the combined library that part of it
+ is a work based on the Library, and explaining where to find the
+ accompanying uncombined form of the same work.
+
+ 6. Revised Versions of the GNU Lesser General Public License.
+
+ The Free Software Foundation may publish revised and/or new versions
+of the GNU Lesser General Public License from time to time. Such new
+versions will be similar in spirit to the present version, but may
+differ in detail to address new problems or concerns.
+
+ Each version is given a distinguishing version number. If the
+Library as you received it specifies that a certain numbered version
+of the GNU Lesser General Public License "or any later version"
+applies to it, you have the option of following the terms and
+conditions either of that published version or of any later version
+published by the Free Software Foundation. If the Library as you
+received it does not specify a version number of the GNU Lesser
+General Public License, you may choose any version of the GNU Lesser
+General Public License ever published by the Free Software Foundation.
+
+ If the Library as you received it specifies that a proxy can decide
+whether future versions of the GNU Lesser General Public License shall
+apply, that proxy's public statement of acceptance of any version is
+permanent authorization for you to choose that version for the
+Library.
diff --git a/lib/tinyNeoPixel_Static/tinyNeoPixel_Static.cpp b/lib/tinyNeoPixel_Static/tinyNeoPixel_Static.cpp
new file mode 100644
index 0000000..d87ed7d
--- /dev/null
+++ b/lib/tinyNeoPixel_Static/tinyNeoPixel_Static.cpp
@@ -0,0 +1,1151 @@
+/*-------------------------------------------------------------------------
+ Arduino library to control a wide variety of WS2811- and WS2812-based RGB
+ LED devices such as Adafruit FLORA RGB Smart Pixels and NeoPixel strips.
+
+ Currently handles 800 KHz bitstreams on 8, 10, 12, 16, and 20 MHz ATtiny
+ MCUs with ATTinyCore 1.30+, 8, 10, 12, 16, 20, 24, 28, and 32 MHz AVRxt
+ tinyAVR 0/1/2-series parts with megaTinyCore 1.0.3+ and those speeds
+ plus the ridiculously overclocked 36, 40, 44, and 48 MHz speeds with
+ AVR Dx-series parts. Note that the highest speeds have not been tested
+ and it would be surprising if the parts could be pushed that far.
+
+ Like the Adafruit original version, it supports LEDs wired
+ for various color orders. 400 kHz support was never included.
+ Nobody has ever asked about it, nor have I seen any 400 kHz LEDs for sale.
+ Ever.
+
+ Written by Phil Burgess / Paint Your Dragon for Adafruit Industries,
+ contributions by PJRC, Michael Miller and other members of the open
+ source community.
+
+ Extensive porting to additional parts and different clock speeds by
+ Spence Konde.
+
+ Adafruit invests time and resources providing this open source code,
+ please support Adafruit and open-source hardware by purchasing products
+ from Adafruit!
+
+ Same goes for Spence too!
+
+ -------------------------------------------------------------------------
+ This file is part of the tinyNeoPixel library derived from
+ Adafruit_NeoPixel.
+
+ NeoPixel is free software: you can redistribute it and/or modify
+ it under the terms of the GNU Lesser General Public License as
+ published by the Free Software Foundation, either version 3 of
+ the License, or (at your option) any later version.
+
+ NeoPixel is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with NeoPixel. If not, see
+ .
+ -------------------------------------------------------------------------*/
+
+#include "tinyNeoPixel_Static.h"
+
+// Constructor when length, pin and type are known at compile-time:
+tinyNeoPixel::tinyNeoPixel(uint16_t n, uint8_t p, neoPixelType t, uint8_t *pxl) :
+ brightness(0), pixels(pxl), endTime(0) {
+ //boolean oldThreeBytesPerPixel = (wOffset == rOffset); // false if RGBW
+ wOffset = (t >> 6) & 0b11; // See notes in header file
+ rOffset = (t >> 4) & 0b11; // regarding R/G/B/W offsets
+ gOffset = (t >> 2) & 0b11;
+ bOffset = t & 0b11;
+ numBytes = n * ((wOffset == rOffset) ? 3 : 4);
+ numLEDs = n;
+ pin = p;
+ port = portOutputRegister(digitalPinToPort(p));
+ pinMask = digitalPinToBitMask(p);
+}
+
+
+
+tinyNeoPixel::~tinyNeoPixel() {
+ //if (pixels) free(pixels);
+ //if (pin >= 0) pinMode(pin, INPUT);
+}
+
+// *INDENT-OFF* astyle don't like assembly
+void tinyNeoPixel::show(void) {
+
+ if ((!pixels) || pin >= NUM_DIGITAL_PINS) {
+ return;
+ }
+
+ // Data latch = 50+ microsecond pause in the output stream. Rather than
+ // put a delay at the end of the function, the ending time is noted and
+ // the function will simply hold off (if needed) on issuing the
+ // subsequent round of data until the latch time has elapsed. This
+ // allows the mainline code to start generating the next frame of data
+ // rather than stalling for the latch.
+ while (!canShow());
+ // endTime is a private member (rather than global var) so that multiple
+ // instances on different pins can be quickly issued in succession (each
+ // instance doesn't delay the next).
+
+ // In order to make this code runtime-configurable to work with any pin,
+ // SBI/CBI instructions are eschewed in favor of full PORT writes via the
+ // OUT or ST instructions. It relies on two facts: that peripheral
+ // functions (such as PWM) take precedence on output pins, so our PORT-
+ // wide writes won't interfere, and that interrupts are globally disabled
+ // while data is being issued to the LEDs, so no other code will be
+ // accessing the PORT. The code takes an initial 'snapshot' of the PORT
+ // state, computes 'pin high' and 'pin low' values, and writes these back
+ // to the PORT register as needed.
+
+ noInterrupts(); // Need 100% focus on instruction timing
+
+
+ // AVRxt MCUs -- tinyAVR 0/1/2, megaAVR 0, AVR Dx ----------------------
+ // with extended maximum speeds to support vigorously overclocked
+ // Dx-series parts. This is by no means intended to imply that they will
+ // run at those speeds, only that - if they do - you can control WS2812s
+ // with them.
+
+ volatile uint16_t
+ i = numBytes; // Loop counter
+ volatile uint8_t
+ *ptr = pixels, // Pointer to next byte
+ b = *ptr++, // Current byte value
+ hi, // PORT w/output bit set high
+ lo; // PORT w/output bit set low
+
+ // Hand-tuned assembly code issues data to the LED drivers at a specific
+ // rate. There's separate code for different CPU speeds (8, 12, 16 MHz)
+ // for both the WS2811 (400 KHz) and WS2812 (800 KHz) drivers. The
+ // datastream timing for the LED drivers allows a little wiggle room each
+ // way (listed in the datasheets), so the conditions for compiling each
+ // case are set up for a range of frequencies rather than just the exact
+ // 8, 12 or 16 MHz values, permitting use with some close-but-not-spot-on
+ // devices (e.g. 16.5 MHz DigiSpark). The ranges were arrived at based
+ // on the datasheet figures and have not been extensively tested outside
+ // the canonical 8/12/16 MHz speeds; there's no guarantee these will work
+ // close to the extremes (or possibly they could be pushed further).
+ // Keep in mind only one CPU speed case actually gets compiled; the
+ // resulting program isn't as massive as it might look from source here.
+
+ // 8 MHz(ish) AVRxt ---------------------------------------------------------
+ #if (F_CPU >= 7400000UL) && (F_CPU <= 9500000UL)
+
+ volatile uint8_t n1, n2 = 0; // First, next bits out
+
+ // We need to be able to write to the port register in one clock
+ // to meet timing constraints here.
+
+ // 10 instruction clocks per bit: HHxxxxxLLL
+ // OUT instructions: ^ ^ ^ (T=0,2,7)
+
+ hi = *port | pinMask;
+ lo = *port & ~pinMask;
+ n1 = lo;
+ if (b & 0x80) n1 = hi;
+
+ // Dirty trick: RJMPs proceeding to the next instruction are used
+ // to delay two clock cycles in one instruction word (rather than
+ // using two NOPs). This was necessary in order to squeeze the
+ // loop down to exactly 64 words -- the maximum possible for a
+ // relative branch.
+
+ asm volatile(
+ "headD:" "\n\t" // Clk Pseudocode
+ // Bit 7:
+ "st %a[port], %[hi]" "\n\t" // 1 PORT = hi
+ "mov %[n2] , %[lo]" "\n\t" // 1 n2 = lo
+ "st %a[port], %[n1]" "\n\t" // 1 PORT = n1
+ "rjmp .+0" "\n\t" // 2 nop nop
+ "sbrc %[byte] , 6" "\n\t" // 1-2 if (b & 0x40)
+ "mov %[n2] , %[hi]" "\n\t" // 0-1 n2 = hi
+ "st %a[port], %[lo]" "\n\t" // 1 PORT = lo
+ "rjmp .+0" "\n\t" // 2 nop nop
+ // Bit 6:
+ "st %a[port], %[hi]" "\n\t" // 1 PORT = hi
+ "mov %[n1] , %[lo]" "\n\t" // 1 n1 = lo
+ "st %a[port], %[n2]" "\n\t" // 1 PORT = n2
+ "rjmp .+0" "\n\t" // 2 nop nop
+ "sbrc %[byte] , 5" "\n\t" // 1-2 if (b & 0x20)
+ "mov %[n1] , %[hi]" "\n\t" // 0-1 n1 = hi
+ "st %a[port], %[lo]" "\n\t" // 1 PORT = lo
+ "rjmp .+0" "\n\t" // 2 nop nop
+ // Bit 5:
+ "st %a[port], %[hi]" "\n\t" // 1 PORT = hi
+ "mov %[n2] , %[lo]" "\n\t" // 1 n2 = lo
+ "st %a[port], %[n1]" "\n\t" // 1 PORT = n1
+ "rjmp .+0" "\n\t" // 2 nop nop
+ "sbrc %[byte] , 4" "\n\t" // 1-2 if (b & 0x10)
+ "mov %[n2] , %[hi]" "\n\t" // 0-1 n2 = hi
+ "st %a[port], %[lo]" "\n\t" // 1 PORT = lo
+ "rjmp .+0" "\n\t" // 2 nop nop
+ // Bit 4:
+ "st %a[port], %[hi]" "\n\t" // 1 PORT = hi
+ "mov %[n1] , %[lo]" "\n\t" // 1 n1 = lo
+ "st %a[port], %[n2]" "\n\t" // 1 PORT = n2
+ "rjmp .+0" "\n\t" // 2 nop nop
+ "sbrc %[byte] , 3" "\n\t" // 1-2 if (b & 0x08)
+ "mov %[n1] , %[hi]" "\n\t" // 0-1 n1 = hi
+ "st %a[port], %[lo]" "\n\t" // 1 PORT = lo
+ "rjmp .+0" "\n\t" // 2 nop nop
+ // Bit 3:
+ "st %a[port], %[hi]" "\n\t" // 1 PORT = hi
+ "mov %[n2] , %[lo]" "\n\t" // 1 n2 = lo
+ "st %a[port], %[n1]" "\n\t" // 1 PORT = n1
+ "rjmp .+0" "\n\t" // 2 nop nop
+ "sbrc %[byte] , 2" "\n\t" // 1-2 if (b & 0x04)
+ "mov %[n2] , %[hi]" "\n\t" // 0-1 n2 = hi
+ "st %a[port], %[lo]" "\n\t" // 1 PORT = lo
+ "rjmp .+0" "\n\t" // 2 nop nop
+ // Bit 2:
+ "st %a[port], %[hi]" "\n\t" // 1 PORT = hi
+ "mov %[n1] , %[lo]" "\n\t" // 1 n1 = lo
+ "st %a[port], %[n2]" "\n\t" // 1 PORT = n2
+ "rjmp .+0" "\n\t" // 2 nop nop
+ "sbrc %[byte] , 1" "\n\t" // 1-2 if (b & 0x02)
+ "mov %[n1] , %[hi]" "\n\t" // 0-1 n1 = hi
+ "st %a[port], %[lo]" "\n\t" // 1 PORT = lo
+ "rjmp .+0" "\n\t" // 2 nop nop
+ // Bit 1:
+ "st %a[port], %[hi]" "\n\t" // 1 PORT = hi
+ "mov %[n2] , %[lo]" "\n\t" // 1 n2 = lo
+ "st %a[port], %[n1]" "\n\t" // 1 PORT = n1
+ "rjmp .+0" "\n\t" // 2 nop nop
+ "sbrc %[byte] , 0" "\n\t" // 1-2 if (b & 0x01)
+ "mov %[n2] , %[hi]" "\n\t" // 0-1 n2 = hi
+ "st %a[port], %[lo]" "\n\t" // 1 PORT = lo
+ "sbiw %[count], 1" "\n\t" // 2 i-- (don't act on Z flag yet)
+ // Bit 0:
+ "st %a[port], %[hi]" "\n\t" // 1 PORT = hi
+ "mov %[n1] , %[lo]" "\n\t" // 1 n1 = lo
+ "st %a[port], %[n2]" "\n\t" // 1 PORT = n2
+ "ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++
+ "sbrc %[byte] , 7" "\n\t" // 1-2 if (b & 0x80)
+ "mov %[n1] , %[hi]" "\n\t" // 0-1 n1 = hi
+ "st %a[port], %[lo]" "\n\t" // 1 PORT = lo
+ "brne headD" "\n" // 2 while(i) (Z flag set above)
+ : [port] "+e" (port),
+ [byte] "+r" (b),
+ [n1] "+r" (n1),
+ [n2] "+r" (n2),
+ [count] "+w" (i)
+ : [ptr] "e" (ptr),
+ [hi] "r" (hi),
+ [lo] "r" (lo));
+
+ #elif (F_CPU >= 9500000UL) && (F_CPU <= 11100000UL)
+ /*
+ volatile uint8_t n1, n2 = 0; // First, next bits out
+
+ */
+ // 14 instruction clocks per bit: HHHHxxxxLLLLL
+ // ST instructions: ^ ^ ^ (T=0,4,7)
+ volatile uint8_t next;
+
+ hi = *port | pinMask;
+ lo = *port & ~pinMask;
+ next = lo;
+ if (b & 0x80) {
+ next = hi;
+ }
+
+ // Don't "optimize" the OUT calls into the bitTime subroutine;
+ // we're exploiting the RCALL and RET as 3- and 4-cycle NOPs!
+ asm volatile(
+ "headD:" "\n\t" // (T = 0)
+ "st %a[port], %[hi]" "\n\t" // (T = 1)
+ "rcall bitTimeD" "\n\t" // Bit 7 (T = 14)
+ "st %a[port], %[hi]" "\n\t"
+ "rcall bitTimeD" "\n\t" // Bit 6
+ "st %a[port], %[hi]" "\n\t"
+ "rcall bitTimeD" "\n\t" // Bit 5
+ "st %a[port], %[hi]" "\n\t"
+ "rcall bitTimeD" "\n\t" // Bit 4
+ "st %a[port], %[hi]" "\n\t"
+ "rcall bitTimeD" "\n\t" // Bit 3
+ "st %a[port], %[hi]" "\n\t"
+ "rcall bitTimeD" "\n\t" // Bit 2
+ "st %a[port], %[hi]" "\n\t"
+ "rcall bitTimeD" "\n\t" // Bit 1
+ // Bit 0:
+ "st %a[port], %[hi]" "\n\t" // 1 PORT = hi (T = 1)
+ "rjmp .+0" "\n\t" // 2 nop nop (T = 3)
+ "ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++ (T = 5)
+ "st %a[port], %[next]" "\n\t" // 1 PORT = next (T = 6)
+ "mov %[next] , %[lo]" "\n\t" // 1 next = lo (T = 7)
+ "sbrc %[byte] , 7" "\n\t" // 1-2 if (b & 0x80) (T = 8)
+ "mov %[next] , %[hi]" "\n\t" // 0-1 next = hi (T = 9)
+ "st %a[port], %[lo]" "\n\t" // 1 PORT = lo (T = 10)
+ "sbiw %[count], 1" "\n\t" // 2 i-- (T = 12)
+ "brne headD" "\n\t" // 2 if (i != 0) -> (next byte)
+ "rjmp doneD" "\n\t"
+ "bitTimeD:" "\n\t" // nop nop nop (T = 4)
+ "st %a[port], %[next]" "\n\t" // 1 PORT = next (T = 5)
+ "mov %[next], %[lo]" "\n\t" // 1 next = lo (T = 6)
+ "rol %[byte]" "\n\t" // 1 b <<= 1 (T = 7)
+ "sbrc %[byte], 7" "\n\t" // 1-2 if (b & 0x80) (T = 8)
+ "mov %[next], %[hi]" "\n\t" // 0-1 next = hi (T = 9)
+ "st %a[port], %[lo]" "\n\t" // 1 PORT = lo (T = 10)
+ "ret" "\n\t" // 4 nop nop nop nop (T = 14)
+ "doneD:" "\n"
+ : [port] "+e" (port),
+ [byte] "+r" (b),
+ [next] "+r" (next),
+ [count] "+w" (i)
+ : [ptr] "e" (ptr),
+ [hi] "r" (hi),
+ [lo] "r" (lo));
+
+
+
+// 12 MHz(ish) AVRxt --------------------------------------------------------
+#elif (F_CPU >= 11100000UL) && (F_CPU <= 14300000UL)
+
+ // In the 12 MHz case, an optimized 800 KHz datastream (no dead time
+ // between bytes) requires a PORT-specific loop similar to the 8 MHz
+ // code (but a little more relaxed in this case).
+
+ // 15 instruction clocks per bit: HHHHxxxxxxLLLLL
+ // OUT instructions: ^ ^ ^ (T=0,4,10)
+
+ volatile uint8_t next;
+
+ hi = *port | pinMask;
+ lo = *port & ~pinMask;
+ next = lo;
+ if (b & 0x80) {
+ next = hi;
+ }
+
+ // Don't "optimize" the OUT calls into the bitTime subroutine;
+ // we're exploiting the RCALL and RET as 3- and 4-cycle NOPs!
+ asm volatile(
+ "headD:" "\n\t" // (T = 0)
+ "st %a[port], %[hi]" "\n\t" // (T = 1)
+ "rcall bitTimeD" "\n\t" // Bit 7 (T = 15)
+ "st %a[port], %[hi]" "\n\t"
+ "rcall bitTimeD" "\n\t" // Bit 6
+ "st %a[port], %[hi]" "\n\t"
+ "rcall bitTimeD" "\n\t" // Bit 5
+ "st %a[port], %[hi]" "\n\t"
+ "rcall bitTimeD" "\n\t" // Bit 4
+ "st %a[port], %[hi]" "\n\t"
+ "rcall bitTimeD" "\n\t" // Bit 3
+ "st %a[port], %[hi]" "\n\t"
+ "rcall bitTimeD" "\n\t" // Bit 2
+ "st %a[port], %[hi]" "\n\t"
+ "rcall bitTimeD" "\n\t" // Bit 1
+ // Bit 0:
+ "st %a[port], %[hi]" "\n\t" // 1 PORT = hi (T = 1)
+ "rjmp .+0" "\n\t" // 2 nop nop (T = 3)
+ "ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++ (T = 5)
+ "st %a[port], %[next]" "\n\t" // 1 PORT = next (T = 6)
+ "mov %[next] , %[lo]" "\n\t" // 1 next = lo (T = 7)
+ "sbrc %[byte] , 7" "\n\t" // 1-2 if (b & 0x80) (T = 8)
+ "mov %[next] , %[hi]" "\n\t" // 0-1 next = hi (T = 9)
+ "nop" "\n\t" // 1 (T = 10)
+ "st %a[port], %[lo]" "\n\t" // 1 PORT = lo (T = 11)
+ "sbiw %[count], 1" "\n\t" // 2 i-- (T = 13)
+ "brne headD" "\n\t" // 2 if (i != 0) -> (next byte)
+ "rjmp doneD" "\n\t"
+ "bitTimeD:" "\n\t" // nop nop nop (T = 4)
+ "st %a[port], %[next]" "\n\t" // 1 PORT = next (T = 5)
+ "mov %[next], %[lo]" "\n\t" // 1 next = lo (T = 6)
+ "rol %[byte]" "\n\t" // 1 b <<= 1 (T = 7)
+ "sbrc %[byte], 7" "\n\t" // 1-2 if (b & 0x80) (T = 8)
+ "mov %[next], %[hi]" "\n\t" // 0-1 next = hi (T = 9)
+ "nop" "\n\t" // 1 (T = 10)
+ "st %a[port], %[lo]" "\n\t" // 1 PORT = lo (T = 11)
+ "ret" "\n\t" // 4 nop nop nop nop (T = 15)
+ "doneD:" "\n"
+ : [port] "+e" (port),
+ [byte] "+r" (b),
+ [next] "+r" (next),
+ [count] "+w" (i)
+ : [ptr] "e" (ptr),
+ [hi] "r" (hi),
+ [lo] "r" (lo));
+
+
+// 16 MHz(ish) AVRxt ------------------------------------------------------
+#elif (F_CPU >= 15400000UL) && (F_CPU <= 19000000L)
+
+ // WS2811 and WS2812 have different hi/lo duty cycles; this is
+ // similar but NOT an exact copy of the prior 400-on-8 code.
+
+ // 20 inst. clocks per bit: HHHHHxxxxxxxxLLLLLLL
+ // ST instructions: ^ ^ ^ (T=0,5,13)
+
+ volatile uint8_t next, bit;
+
+ hi = *port | pinMask;
+ lo = *port & ~pinMask;
+ next = lo;
+ bit = 8;
+
+ asm volatile(
+ "head20:" "\n\t" // Clk Pseudocode (T = 0)
+ "st %a[port], %[hi]" "\n\t" // 1 PORT = hi (T = 1)
+ "nop" "\n\t" // 1 nop (T = 2)
+ "sbrc %[byte], 7" "\n\t" // 1-2 if (b & 128)
+ "mov %[next], %[hi]" "\n\t" // 0-1 next = hi (T = 4)
+ "dec %[bit]" "\n\t" // 1 bit-- (T = 5)
+ "st %a[port], %[next]" "\n\t" // 1 PORT = next (T = 6)
+ "nop" "\n\t" // 1 nop (T = 7)
+ "mov %[next] , %[lo]" "\n\t" // 1 next = lo (T = 8)
+ "breq nextbyte20" "\n\t" // 1-2 if (bit == 0) (from dec above)
+ "rol %[byte]" "\n\t" // 1 b <<= 1 (T = 10)
+ "rjmp .+0" "\n\t" // 2 nop nop (T = 12)
+ "nop" "\n\t" // 1 nop (T = 13)
+ "st %a[port], %[lo]" "\n\t" // 1 PORT = lo (T = 14)
+ "rjmp .+0" "\n\t" // 2 nop nop (T = 16)
+ "rjmp .+0" "\n\t" // 2 nop nop (T = 18)
+ "rjmp head20" "\n\t" // 2 -> head20 (next bit out) (T=20)
+ "nextbyte20:" "\n\t" // (T = 10)
+ "ldi %[bit] , 8" "\n\t" // 1 bit = 8 (T = 11)
+ "ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++ (T = 13)
+ "st %a[port], %[lo]" "\n\t" // 1 PORT = lo (T = 14)
+ "rjmp .+0" "\n\t" // 2 nop nop (T = 16)
+ "sbiw %[count], 1" "\n\t" // 2 i-- (T = 18)
+ "brne head20" "\n" // 2 if (i != 0) -> (next byte) (T=20)
+ : [port] "+e" (port),
+ [byte] "+r" (b),
+ [bit] "+r" (bit),
+ [next] "+r" (next),
+ [count] "+w" (i)
+ : [ptr] "e" (ptr),
+ [hi] "r" (hi),
+ [lo] "r" (lo));
+
+// 20 MHz(ish) AVRxt ------------------------------------------------------
+#elif (F_CPU >= 19000000UL) && (F_CPU <= 22000000L)
+
+
+ // 25 inst. clocks per bit: HHHHHHHxxxxxxxxLLLLLLLLLL
+ // ST instructions: ^ ^ ^ (T=0,7,15)
+
+ volatile uint8_t next, bit;
+
+ hi = *port | pinMask;
+ lo = *port & ~pinMask;
+ next = lo;
+ bit = 8;
+
+ asm volatile(
+ "head20:" "\n\t" // Clk Pseudocode (T = 0)
+ "st %a[port], %[hi]" "\n\t" // 1 PORT = hi (T = 1)
+ "sbrc %[byte], 7" "\n\t" // 1-2 if (b & 128)
+ "mov %[next], %[hi]" "\n\t" // 0-1 next = hi (T = 3)
+ "dec %[bit]" "\n\t" // 1 bit-- (T = 4)
+ "nop" "\n\t" // 1 nop (T = 5)
+ "rjmp .+0" "\n\t" // 2 nop nop (T = 7)
+ "st %a[port], %[next]" "\n\t" // 1 PORT = next (T = 8)
+ "mov %[next] , %[lo]" "\n\t" // 1 next = lo (T = 9)
+ "breq nextbyte20" "\n\t" // 1-2 if (bit == 0) (from dec above)
+ "rol %[byte]" "\n\t" // 1 b <<= 1 (T = 11)
+ "rjmp .+0" "\n\t" // 2 nop nop (T = 13)
+ "rjmp .+0" "\n\t" // 2 nop nop (T = 15)
+ "st %a[port], %[lo]" "\n\t" // 1 PORT = lo (T = 16)
+ "nop" "\n\t" // 1 nop (T = 17)
+ "rjmp .+0" "\n\t" // 2 nop nop (T = 19)
+ "rjmp .+0" "\n\t" // 2 nop nop (T = 21)
+ "rjmp .+0" "\n\t" // 2 nop nop (T = 23)
+ "rjmp head20" "\n\t" // 2 -> head20 (next bit out)
+ "nextbyte20:" "\n\t" // (T = 11)
+ "ldi %[bit] , 8" "\n\t" // 1 bit = 8 (T = 12)
+ "ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++ (T = 14)
+ "nop" "\n\t" // 1 nop (T = 15)
+ "st %a[port], %[lo]" "\n\t" // 1 PORT = lo (T = 16)
+ "nop" "\n\t" // 1 nop (T = 17)
+ "rjmp .+0" "\n\t" // 2 nop nop (T = 19)
+ "rjmp .+0" "\n\t" // 2 nop nop (T = 21)
+ "sbiw %[count], 1" "\n\t" // 2 i-- (T = 23)
+ "brne head20" "\n" // 2 if (i != 0) -> (next byte) ()
+ : [port] "+e" (port),
+ [byte] "+r" (b),
+ [bit] "+r" (bit),
+ [next] "+r" (next),
+ [count] "+w" (i)
+ : [ptr] "e" (ptr),
+ [hi] "r" (hi),
+ [lo] "r" (lo));
+
+// 24 (22~26) MHz AVRxt ------------------------------------------------------
+#elif (F_CPU >= 22000000UL) && (F_CPU <= 26000000L)
+
+
+ // 30 inst. clocks per bit: HHHHHHHxxxxxxxxLLLLLLLLLL
+ // ST instructions: ^ ^ ^ (T=0,9,18)
+
+ volatile uint8_t next, bit;
+
+ hi = *port | pinMask;
+ lo = *port & ~pinMask;
+ next = lo;
+ bit = 8;
+
+
+ asm volatile(
+ "head24:" "\n\t" // Clk Pseudocode (T = 0)
+ "st %a[port], %[hi]" "\n\t" // 1 PORT = hi (T = 1)
+ "sbrc %[byte], 7" "\n\t" // 1-2 if (b & 128)
+ "mov %[next], %[hi]" "\n\t" // 0-1 next = hi (T = 3)
+ "dec %[bit]" "\n\t" // 1 bit-- (T = 4)
+ "nop" "\n\t" // 1 nop (T = 5)
+ "rjmp .+0" "\n\t" // 2 nop nop (T = 7)
+ "rjmp .+0" "\n\t" // 2 nop nop (T = 9)
+ "st %a[port], %[next]" "\n\t" // 1 PORT = next (T = 10)
+ "mov %[next] , %[lo]" "\n\t" // 1 next = lo (T = 11)
+ "nop" "\n\t" // 1 nop (T = 12)
+ "rjmp .+0" "\n\t" // 2 nop nop (T = 14)
+ "rjmp .+0" "\n\t" // 2 nop nop (T = 16)
+ "breq nextbyte24" "\n\t" // 1-2 if (bit == 0) (from dec above)
+ "rol %[byte]" "\n\t" // 1 b <<= 1 (T = 18)
+ "st %a[port], %[lo]" "\n\t" // 1 PORT = lo (T = 19)
+ "rcall seconddelay24" "\n\t" // 2+4+3=9 (T = 28)
+ "rjmp head24" "\n\t" // 2 -> head20 (next bit out)
+ "seconddelay24:" "\n\t" //
+ "nop" "\n\t" // 1
+ "rjmp .+0" "\n\t" // 2
+ "ret" "\n\t" // 4
+ "nextbyte24:" "\n\t" // last bit of a byte (T = 18)
+ "st %a[port], %[lo]" "\n\t" // 1 PORT = lo (T = 19)
+ "ldi %[bit] , 8" "\n\t" // 1 bit = 8 (T = 20)
+ "ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++ (T = 22)
+ "rjmp .+0" "\n\t" // 2 nop nop (T = 24)
+ "rjmp .+0" "\n\t" // 2 nop nop (T = 26)
+ "sbiw %[count], 1" "\n\t" // 2 i-- (T = 28)
+ "brne head24" "\n" // 2 if (i != 0) -> (next byte) ()
+ : [port] "+e" (port),
+ [byte] "+r" (b),
+ [bit] "+r" (bit),
+ [next] "+r" (next),
+ [count] "+w" (i)
+ : [ptr] "e" (ptr),
+ [hi] "r" (hi),
+ [lo] "r" (lo));
+
+
+
+
+// 28 (26~30) MHz AVRxt ------------------------------------------------------
+#elif (F_CPU >= 26000000UL) && (F_CPU <= 30000000L)
+
+
+ // 35 inst. clocks per bit: HHHHHHHxxxxxxxxLLLLLLLLLL
+ // ST instructions: ^ ^ ^ (T=0,10,21)
+
+ volatile uint8_t next, bit;
+
+ hi = *port | pinMask;
+ lo = *port & ~pinMask;
+ next = lo;
+ bit = 8;
+
+ asm volatile(
+ "head28:" "\n\t" // Clk Pseudocode (T = 0)
+ "st %a[port], %[hi]" "\n\t" // 1 PORT = hi (T = 1)
+ "sbrc %[byte], 7" "\n\t" // 1-2 if (b & 128)
+ "mov %[next], %[hi]" "\n\t" // 0-1 next = hi (T = 3)
+ "dec %[bit]" "\n\t" // 1 bit-- (T = 4)
+ "rcall zerothdelay32" "\n\t" // 2+4=6
+ "st %a[port], %[next]" "\n\t" // 1 PORT = next (T = 11)
+ "mov %[next] , %[lo]" "\n\t" // 1 next = lo (T = 12)
+ "rcall firstdelay28" "\n\t" // 2+4 = 7 (T = 19)
+ "breq nextbyte28" "\n\t" // 1-2 if (bit == 0) (from dec above)
+ "rol %[byte]" "\n\t" // 1 b <<= 1 (T = 21)
+ "st %a[port], %[lo]" "\n\t" // 1 PORT = lo (T = 22)
+ "rcall seconddelay28" "\n\t" // 2+4+1+4=11 (T = 33)
+ "rjmp head28" "\n\t" // 2 -> head20 (next bit out)
+ "seconddelay28:" "\n\t" //
+ "rjmp .+0" "\n\t" // 2
+ "rjmp .+0" "\n\t" // 2
+ "firstdelay28:" "\n\t" // first delay
+ "nop" "\n\t" // 1 nop
+ "thirddelay28:" "\n\t" // third delay
+ "zerothdelay28:" "\n\t"
+ "ret" "\n\t" // 4
+ "nextbyte28:" "\n\t" // last bit of a byte (T = 21)
+ "st %a[port], %[lo]" "\n\t" // 1 PORT = lo (T = 22)
+ "ldi %[bit] , 8" "\n\t" // 1 bit = 8 (T = 23)
+ "ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++ (T = 25)
+ "rcall thirddelay28" "\n\t" // 2+4 = 6 (T = 31)
+ "sbiw %[count], 1" "\n\t" // 2 i-- (T = 33)
+ "brne head28" "\n" // 2 if (i != 0) -> (next byte) ()
+ : [port] "+e" (port),
+ [byte] "+r" (b),
+ [bit] "+r" (bit),
+ [next] "+r" (next),
+ [count] "+w" (i)
+ : [ptr] "e" (ptr),
+ [hi] "r" (hi),
+ [lo] "r" (lo));
+
+
+// 32 (30~34) MHz AVRxt ------------------------------------------------------
+#elif (F_CPU > 30000000UL) && (F_CPU <= 34000000L)
+
+
+ // 40 inst. clocks per bit: HHHHHHHxxxxxxxxLLLLLLLLLL
+ // ST instructions: ^ ^ ^ (T=0,11,24)
+
+ volatile uint8_t next, bit;
+
+ hi = *port | pinMask;
+ lo = *port & ~pinMask;
+ next = lo;
+ bit = 8;
+
+ asm volatile(
+ "head32:" "\n\t" // Clk Pseudocode (T = 0)
+ "st %a[port], %[hi]" "\n\t" // 1 PORT = hi (T = 1)
+ "sbrc %[byte], 7" "\n\t" // 1-2 if (b & 128)
+ "mov %[next], %[hi]" "\n\t" // 0-1 next = hi (T = 3)
+ "dec %[bit]" "\n\t" // 1 bit-- (T = 4)
+ "rcall zerothdelay32" "\n\t" // 2+4+1=7
+ "st %a[port], %[next]" "\n\t" // 1 PORT = next (T = 12)
+ "mov %[next] , %[lo]" "\n\t" // 1 next = lo (T = 13)
+ "rcall firstdelay32" "\n\t" // 2+4+1+2 = 9 (T = 22)
+ "breq nextbyte32" "\n\t" // 1-2 if (bit == 0) (from dec above)
+ "rol %[byte]" "\n\t" // 1 b <<= 1 (T = 24)
+ "st %a[port], %[lo]" "\n\t" // 1 PORT = lo (T = 25)
+ "rcall seconddelay32" "\n\t" // 2+4+3+2+3=13 (T = 38)
+ "rjmp head32" "\n\t" // 2 -> head20 (next bit out)
+ "seconddelay32:" "\n\t" // second delay 13 cycles
+ "rjmp .+0" "\n\t" // 2
+ "rjmp .+0" "\n\t" // 2
+ "firstdelay32:" "\n\t" // first delay 9 cycles
+ "nop" "\n\t" // 1 nop
+ "thirddelay32:" "\n\t" // third delay 8 cycles
+ "nop" "\n\t" // 1 nop
+ "zerothdelay32:" "\n\t" // zeroth delay 7 cycles
+ "nop" "\n\t" // 1 nop
+ "ret" "\n\t" // 4
+ "nextbyte32:" "\n\t" // last bit of a byte (T = 24)
+ "st %a[port], %[lo]" "\n\t" // 1 PORT = lo (T = 25)
+ "ldi %[bit] , 8" "\n\t" // 1 bit = 8 (T = 26)
+ "ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++ (T = 28)
+ "rcall thirddelay32" "\n\t" // 2+4+1+1 = 8 (T = 36)
+ "sbiw %[count], 1" "\n\t" // 2 i-- (T = 38)
+ "brne head32" "\n" // 2 if (i != 0) -> (next byte) ()
+ : [port] "+e" (port),
+ [byte] "+r" (b),
+ [bit] "+r" (bit),
+ [next] "+r" (next),
+ [count] "+w" (i)
+ : [ptr] "e" (ptr),
+ [hi] "r" (hi),
+ [lo] "r" (lo));
+
+// 36 (34~38) MHz AVRxt ------------------------------------------------------
+#elif (F_CPU > 3400000UL) && (F_CPU <= 38000000L)
+
+
+ // 45 inst. clocks per bit: HHHHHHHxxxxxxxxLLLLLLLLLL
+ // ST instructions: ^ ^ ^ (T=0,12,27)
+
+ volatile uint8_t next, bit;
+
+ hi = *port | pinMask;
+ lo = *port & ~pinMask;
+ next = lo;
+ bit = 8;
+
+ asm volatile(
+ "head36:" "\n\t" // Clk Pseudocode (T = 0)
+ "st %a[port], %[hi]" "\n\t" // 1 PORT = hi (T = 1)
+ "sbrc %[byte], 7" "\n\t" // 1-2 if (b & 128)
+ "mov %[next], %[hi]" "\n\t" // 0-1 next = hi (T = 3)
+ "dec %[bit]" "\n\t" // 1 bit-- (T = 4)
+ "rcall zerothdelay36" "\n\t" // 2+4+2=8
+ "st %a[port], %[next]" "\n\t" // 1 PORT = next (T = 13)
+ "mov %[next] , %[lo]" "\n\t" // 1 next = lo (T = 14)
+ "rcall firstdelay36" "\n\t" // 2+4+3 = 11 (T = 25)
+ "breq nextbyte36" "\n\t" // 1-2 if (bit == 0) (from dec above)
+ "rol %[byte]" "\n\t" // 1 b <<= 1 (T = 27)
+ "st %a[port], %[lo]" "\n\t" // 1 PORT = lo (T = 28)
+ "rcall seconddelay36" "\n\t" // 2+4+3+2+2=15 (T = 43)
+ "rjmp head36" "\n\t" // 2 -> head20 (next bit out)
+ "seconddelay36:" "\n\t" // second delay 15 cycles
+ "rjmp .+0" "\n\t" // 2
+ "rjmp .+0" "\n\t" // 2
+ "firstdelay36:" "\n\t" // first delay 11 cycles
+ "nop" "\n\t" // 1 nop
+ "thirddelay36:" "\n\t" // third delay 10 cycles
+ "rjmp .+0" "\n\t" // 2 nop nop
+ "zerothdelay36:" "\n\t" // zeroth delay 8 cycles
+ "rjmp .+0" "\n\t" // 2 nop nop
+ "ret" "\n\t" // 4
+ "nextbyte36:" "\n\t" // last bit of a byte (T = 27)
+ "st %a[port], %[lo]" "\n\t" // 1 PORT = lo (T = 28)
+ "ldi %[bit] , 8" "\n\t" // 1 bit = 8 (T = 29)
+ "ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++ (T = 31)
+ "rcall thirddelay36" "\n\t" // 2+4 = 10 (T = 41)
+ "sbiw %[count], 1" "\n\t" // 2 i-- (T = 43)
+ "brne head36" "\n" // 2 if (i != 0) -> (next byte) ()
+ : [port] "+e" (port),
+ [byte] "+r" (b),
+ [bit] "+r" (bit),
+ [next] "+r" (next),
+ [count] "+w" (i)
+ : [ptr] "e" (ptr),
+ [hi] "r" (hi),
+ [lo] "r" (lo));
+
+
+// 40 (38-44) MHz AVRxt ------------------------------------------------------
+#elif (F_CPU > 3800000UL) && (F_CPU <= 44000000L)
+
+
+ // 50 inst. clocks per bit: HHHHHHHxxxxxxxxLLLLLLLLLL
+ // ST instructions: ^ ^ ^ (T=0,14,30)
+
+ volatile uint8_t next, bit;
+
+ hi = *port | pinMask;
+ lo = *port & ~pinMask;
+ next = lo;
+ bit = 8;
+
+ asm volatile(
+ "head40:" "\n\t" // Clk Pseudocode (T = 0)
+ "st %a[port], %[hi]" "\n\t" // 1 PORT = hi (T = 1)
+ "sbrc %[byte], 7" "\n\t" // 1-2 if (b & 128)
+ "mov %[next], %[hi]" "\n\t" // 0-1 next = hi (T = 3)
+ "dec %[bit]" "\n\t" // 1 bit-- (T = 4)
+ "rcall zerothdelay40" "\n\t" // 2+4+4=10
+ "st %a[port], %[next]" "\n\t" // 1 PORT = next (T = 15)
+ "mov %[next] , %[lo]" "\n\t" // 1 next = lo (T = 16)
+ "rcall firstdelay40" "\n\t" // 2+4+4+2 = 12 (T = 28)
+ "breq nextbyte40" "\n\t" // 1-2 if (bit == 0) (from dec above)
+ "rol %[byte]" "\n\t" // 1 b <<= 1 (T = 30)
+ "st %a[port], %[lo]" "\n\t" // 1 PORT = lo (T = 31)
+ "rcall seconddelay40" "\n\t" // 2+4+3+2+3=17 (T = 48)
+ "rjmp head40" "\n\t" // 2 -> head20 (next bit out)
+ "seconddelay40:" "\n\t" // second delay 17 cycles
+ "nop" "\n\t" // 1 nop
+ "rjmp .+0" "\n\t" // 2
+ "rjmp .+0" "\n\t" // 2
+ "thirddelay40:" "\n\t" // third delay 12 cycles
+ "firstdelay40:" "\n\t" // first delay 12 cycles
+ "rjmp .+0" "\n\t" // 2 nop nop
+ "zerothdelay40:" "\n\t" // zeroth delay 10 cycles
+ "rjmp .+0" "\n\t" // 2 nop nop
+ "rjmp .+0" "\n\t" // 2 nop nop
+ "ret" "\n\t" // 4
+ "nextbyte40:" "\n\t" // last bit of a byte (T = 30)
+ "st %a[port], %[lo]" "\n\t" // 1 PORT = lo (T = 31)
+ "ldi %[bit] , 8" "\n\t" // 1 bit = 8 (T = 32)
+ "ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++ (T = 34)
+ "rcall thirddelay40" "\n\t" // 2+4+4+2 = 12 (T = 46)
+ "sbiw %[count], 1" "\n\t" // 2 i-- (T = 48)
+ "brne head40" "\n" // 2 if (i != 0) -> (next byte) ()
+ : [port] "+e" (port),
+ [byte] "+r" (b),
+ [bit] "+r" (bit),
+ [next] "+r" (next),
+ [count] "+w" (i)
+ : [ptr] "e" (ptr),
+ [hi] "r" (hi),
+ [lo] "r" (lo));
+
+// 48 (44-50) MHz AVRxt ------------------------------------------------------
+#elif (F_CPU > 4400000UL) && (F_CPU <= 50000000L)
+
+
+ // 60 inst. clocks per bit: HHHHHHHxxxxxxxxLLLLLLLLLL
+ // ST instructions: ^ ^ ^ (T=0,16,35)
+
+ volatile uint8_t next, bit;
+
+ hi = *port | pinMask;
+ lo = *port & ~pinMask;
+ next = lo;
+ bit = 8;
+ asm volatile(
+ "head48:" "\n\t" // Clk Pseudocode (T = 0)
+ "st %a[port], %[hi]" "\n\t" // 1 PORT = hi (T = 1)
+ "sbrc %[byte], 7" "\n\t" // 1-2 if (b & 128)
+ "mov %[next], %[hi]" "\n\t" // 0-1 next = hi (T = 3)
+ "dec %[bit]" "\n\t" // 1 bit-- (T = 4)
+ "rcall zerothdelay48" "\n\t" // 2+4=13
+ "st %a[port], %[next]" "\n\t" // 1 PORT = next (T = 17)
+ "mov %[next] , %[lo]" "\n\t" // 1 next = lo (T = 18)
+ "rcall firstdelay48" "\n\t" // 2+4+3 = 15 (T = 33)
+ "breq nextbyte48" "\n\t" // 1-2 if (bit == 0) (from dec above)
+ "rol %[byte]" "\n\t" // 1 b <<= 1 (T = 35)
+ "st %a[port], %[lo]" "\n\t" // 1 PORT = lo (T = 36)
+ "rcall seconddelay48" "\n\t" // 2+4+3+2+3=22 (T = 58)
+ "rjmp head48" "\n\t" // 2 -> head20 (next bit out)
+ "seconddelay48:" "\n\t" // second delay 22 cycles
+ "rjmp .+0" "\n\t" // 2
+ "rjmp .+0" "\n\t" // 2
+ "nop" "\n\t" // 1 nop
+ "thirddelay48:" "\n\t" // third delay 17 cycles
+ "rjmp .+0" "\n\t" // 2
+ "firstdelay48:" "\n\t" // first delay 15 cycles
+ "rjmp .+0" "\n\t" // 2 nop nop
+ "zerothdelay48:" "\n\t" // zeroth delay 13 cycles
+ "nop" "\n\t" // 1 nop
+ "rcall emptydelay48" "\n\t" // 2+4
+ "ret" "\n\t" // 4
+ "emptydelay48:" "\n\t" // immediately returns: 2+4 = 6 cycles, for 2 words!
+ "ret" "\n\t" // 4
+ "nextbyte48:" "\n\t" // last bit of a byte (T = 35)
+ "st %a[port], %[lo]" "\n\t" // 1 PORT = lo (T = 36)
+ "ldi %[bit] , 8" "\n\t" // 1 bit = 8 (T = 37)
+ "ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++ (T = 39)
+ "rcall thirddelay48" "\n\t" // 2+4 = 17 (T = 56)
+ "sbiw %[count], 1" "\n\t" // 2 i-- (T = 58)
+ "brne head48" "\n" // 2 if (i != 0) -> (next byte) ()
+ : [port] "+e" (port),
+ [byte] "+r" (b),
+ [bit] "+r" (bit),
+ [next] "+r" (next),
+ [count] "+w" (i)
+ : [ptr] "e" (ptr),
+ [hi] "r" (hi),
+ [lo] "r" (lo));
+
+#else
+ #error "CPU SPEED NOT SUPPORTED"
+#endif
+
+ // END AVR ----------------------------------------------------------------
+
+ interrupts();
+ #if (!defined(DISABLEMILLIS) && !defined(MILLIS_USE_TIMERRTC) && !defined(MILLIS_USE_TIMERRTC_XTAL) && !defined(MILLIS_USE_TIMERRTC_XOSC))
+ endTime = micros();
+ // Save EOD time for latch on next call
+ #else
+ #warning "micros is not available based on timer settings. You must ensure at least 50us between calls to show() or the pixels will never latch"
+ #endif
+}
+
+// Set the output pin number
+void tinyNeoPixel::setPin(uint8_t p) {
+ pin = p;
+ port = portOutputRegister(digitalPinToPort(p));
+ pinMask = digitalPinToBitMask(p);
+}
+
+// Set pixel color from separate R,G,B components:
+void tinyNeoPixel::setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b) {
+ if (n < numLEDs) {
+ if (brightness) { // See notes in setBrightness()
+ r = (r * brightness) >> 8;
+ g = (g * brightness) >> 8;
+ b = (b * brightness) >> 8;
+ }
+ uint8_t *p;
+ if (wOffset == rOffset) { // Is an RGB-type strip
+ p = &pixels[n * 3]; // 3 bytes per pixel
+ } else { // Is a WRGB-type strip
+ p = &pixels[n * 4]; // 4 bytes per pixel
+ p[wOffset] = 0; // But only R,G,B passed -- set W to 0
+ }
+ p[rOffset] = r; // R,G,B always stored
+ p[gOffset] = g;
+ p[bOffset] = b;
+ }
+}
+
+void tinyNeoPixel::setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b, uint8_t w) {
+ if (n < numLEDs) {
+ if (brightness) { // See notes in setBrightness()
+ r = (r * brightness) >> 8;
+ g = (g * brightness) >> 8;
+ b = (b * brightness) >> 8;
+ w = (w * brightness) >> 8;
+ }
+ uint8_t *p;
+ if (wOffset == rOffset) { // Is an RGB-type strip
+ p = &pixels[n * 3]; // 3 bytes per pixel (ignore W)
+ } else { // Is a WRGB-type strip
+ p = &pixels[n * 4]; // 4 bytes per pixel
+ p[wOffset] = w; // Store W
+ }
+ p[rOffset] = r; // Store R,G,B
+ p[gOffset] = g;
+ p[bOffset] = b;
+ }
+}
+
+// Set pixel color from 'packed' 32-bit RGB color:
+void tinyNeoPixel::setPixelColor(uint16_t n, uint32_t c) {
+ if (n < numLEDs) {
+ uint8_t *p,
+ r = (uint8_t)(c >> 16),
+ g = (uint8_t)(c >> 8),
+ b = (uint8_t)c;
+ if (brightness) { // See notes in setBrightness()
+ r = (r * brightness) >> 8;
+ g = (g * brightness) >> 8;
+ b = (b * brightness) >> 8;
+ }
+ if (wOffset == rOffset) {
+ p = &pixels[n * 3];
+ } else {
+ p = &pixels[n * 4];
+ uint8_t w = (uint8_t)(c >> 24);
+ p[wOffset] = brightness ? ((w * brightness) >> 8) : w;
+ }
+ p[rOffset] = r;
+ p[gOffset] = g;
+ p[bOffset] = b;
+ }
+}
+
+/*!
+ @brief Fill all or part of the NeoPixel strip with a color.
+ @param c 32-bit color value. Most significant byte is white (for
+ RGBW pixels) or ignored (for RGB pixels), next is red,
+ then green, and least significant byte is blue. If all
+ arguments are unspecified, this will be 0 (off).
+ @param first Index of first pixel to fill, starting from 0. Must be
+ in-bounds, no clipping is performed. 0 if unspecified.
+ @param count Number of pixels to fill, as a positive value. Passing
+ 0 or leaving unspecified will fill to end of strip.
+*/
+void tinyNeoPixel::fill(uint32_t c, uint16_t first, uint16_t count) {
+ uint16_t i, end;
+
+ if (first >= numLEDs) {
+ return; // If first LED is past end of strip, nothing to do
+ }
+
+ // Calculate the index ONE AFTER the last pixel to fill
+ if (count == 0) {
+ // Fill to end of strip
+ end = numLEDs;
+ } else {
+ // Ensure that the loop won't go past the last pixel
+ end = first + count;
+ if (end > numLEDs) end = numLEDs;
+ }
+
+ for (i = first; i < end; i++) {
+ this->setPixelColor(i, c);
+ }
+}
+
+
+/*!
+ @brief Convert hue, saturation and value into a packed 32-bit RGB color
+ that can be passed to setPixelColor() or other RGB-compatible
+ functions.
+ @param hue An unsigned 16-bit value, 0 to 65535, representing one full
+ loop of the color wheel, which allows 16-bit hues to "roll
+ over" while still doing the expected thing (and allowing
+ more precision than the wheel() function that was common to
+ prior NeoPixel examples).
+ @param sat Saturation, 8-bit value, 0 (min or pure grayscale) to 255
+ (max or pure hue). Default of 255 if unspecified.
+ @param val Value (brightness), 8-bit value, 0 (min / black / off) to
+ 255 (max or full brightness). Default of 255 if unspecified.
+ @return Packed 32-bit RGB with the most significant byte set to 0 -- the
+ white element of WRGB pixels is NOT utilized. Result is linearly
+ but not perceptually correct, so you may want to pass the result
+ through the gamma32() function (or your own gamma-correction
+ operation) else colors may appear washed out. This is not done
+ automatically by this function because coders may desire a more
+ refined gamma-correction function than the simplified
+ one-size-fits-all operation of gamma32(). Diffusing the LEDs also
+ really seems to help when using low-saturation colors.
+*/
+uint32_t tinyNeoPixel::ColorHSV(uint16_t hue, uint8_t sat, uint8_t val) {
+
+ uint8_t r, g, b;
+
+ // Remap 0-65535 to 0-1529. Pure red is CENTERED on the 64K rollover;
+ // 0 is not the start of pure red, but the midpoint...a few values above
+ // zero and a few below 65536 all yield pure red (similarly, 32768 is the
+ // midpoint, not start, of pure cyan). The 8-bit RGB hexcone (256 values
+ // each for red, green, blue) really only allows for 1530 distinct hues
+ // (not 1536, more on that below), but the full unsigned 16-bit type was
+ // chosen for hue so that one's code can easily handle a contiguous color
+ // wheel by allowing hue to roll over in either direction.
+ hue = (hue * 1530L + 32768) / 65536;
+ // Because red is centered on the rollover point (the +32768 above,
+ // essentially a fixed-point +0.5), the above actually yields 0 to 1530,
+ // where 0 and 1530 would yield the same thing. Rather than apply a
+ // costly modulo operator, 1530 is handled as a special case below.
+
+ // So you'd think that the color "hexcone" (the thing that ramps from
+ // pure red, to pure yellow, to pure green and so forth back to red,
+ // yielding six slices), and with each color component having 256
+ // possible values (0-255), might have 1536 possible items (6*256),
+ // but in reality there's 1530. This is because the last element in
+ // each 256-element slice is equal to the first element of the next
+ // slice, and keeping those in there this would create small
+ // discontinuities in the color wheel. So the last element of each
+ // slice is dropped...we regard only elements 0-254, with item 255
+ // being picked up as element 0 of the next slice. Like this:
+ // Red to not-quite-pure-yellow is: 255, 0, 0 to 255, 254, 0
+ // Pure yellow to not-quite-pure-green is: 255, 255, 0 to 1, 255, 0
+ // Pure green to not-quite-pure-cyan is: 0, 255, 0 to 0, 255, 254
+ // and so forth. Hence, 1530 distinct hues (0 to 1529), and hence why
+ // the constants below are not the multiples of 256 you might expect.
+
+ // Convert hue to R,G,B (nested ifs faster than divide+mod+switch):
+ if (hue < 510) { // Red to Green-1
+ b = 0;
+ if (hue < 255) { // Red to Yellow-1
+ r = 255;
+ g = hue; // g = 0 to 254
+ } else { // Yellow to Green-1
+ r = 510 - hue; // r = 255 to 1
+ g = 255;
+ }
+ } else if (hue < 1020) { // Green to Blue-1
+ r = 0;
+ if (hue < 765) { // Green to Cyan-1
+ g = 255;
+ b = hue - 510; // b = 0 to 254
+ } else { // Cyan to Blue-1
+ g = 1020 - hue; // g = 255 to 1
+ b = 255;
+ }
+ } else if (hue < 1530) { // Blue to Red-1
+ g = 0;
+ if (hue < 1275) { // Blue to Magenta-1
+ r = hue - 1020; // r = 0 to 254
+ b = 255;
+ } else { // Magenta to Red-1
+ r = 255;
+ b = 1530 - hue; // b = 255 to 1
+ }
+ } else { // Last 0.5 Red (quicker than % operator)
+ r = 255;
+ g = b = 0;
+ }
+
+ // Apply saturation and value to R,G,B, pack into 32-bit result:
+ uint32_t v1 = 1 + val; // 1 to 256; allows >>8 instead of /255
+ uint16_t s1 = 1 + sat; // 1 to 256; same reason
+ uint8_t s2 = 255 - sat; // 255 to 0
+ return ((((((r * s1) >> 8) + s2) * v1) & 0xff00) << 8) |
+ (((((g * s1) >> 8) + s2) * v1) & 0xff00) |
+ (((((b * s1) >> 8) + s2) * v1) >> 8);
+}
+
+
+// Query color from previously-set pixel (returns packed 32-bit RGB value)
+uint32_t tinyNeoPixel::getPixelColor(uint16_t n) const {
+ if (n >= numLEDs) {
+ return 0; // Out of bounds, return no color.
+ }
+
+ uint8_t *p;
+
+ if (wOffset == rOffset) { // Is RGB-type device
+ p = &pixels[n * 3];
+ if (brightness) {
+ // Stored color was decimated by setBrightness(). Returned value
+ // attempts to scale back to an approximation of the original 24-bit
+ // value used when setting the pixel color, but there will always be
+ // some error -- those bits are simply gone. Issue is most
+ // pronounced at low brightness levels.
+ return (((uint32_t)(p[rOffset] << 8) / brightness) << 16) |
+ (((uint32_t)(p[gOffset] << 8) / brightness) << 8) |
+ ((uint32_t)(p[bOffset] << 8) / brightness);
+ } else {
+ // No brightness adjustment has been made -- return 'raw' color
+ return ((uint32_t)p[rOffset] << 16) |
+ ((uint32_t)p[gOffset] << 8) |
+ (uint32_t)p[bOffset];
+ }
+ } else { // Is RGBW-type device
+ p = &pixels[n * 4];
+ if (brightness) { // Return scaled color
+ return (((uint32_t)(p[wOffset] << 8) / brightness) << 24) |
+ (((uint32_t)(p[rOffset] << 8) / brightness) << 16) |
+ (((uint32_t)(p[gOffset] << 8) / brightness) << 8) |
+ ((uint32_t)(p[bOffset] << 8) / brightness);
+ } else { // Return raw color
+ return ((uint32_t)p[wOffset] << 24) |
+ ((uint32_t)p[rOffset] << 16) |
+ ((uint32_t)p[gOffset] << 8) |
+ (uint32_t)p[bOffset];
+ }
+ }
+}
+
+// Returns pointer to pixels[] array. Pixel data is stored in device-
+// native format and is not translated here. Application will need to be
+// aware of specific pixel data format and handle colors appropriately.
+uint8_t *tinyNeoPixel::getPixels(void) const {
+ return pixels;
+}
+
+uint16_t tinyNeoPixel::numPixels(void) const {
+ return numLEDs;
+}
+
+// Adjust output brightness; 0=darkest (off), 255=brightest. This does
+// NOT immediately affect what's currently displayed on the LEDs. The
+// next call to show() will refresh the LEDs at this level. However,
+// this process is potentially "lossy," especially when increasing
+// brightness. The tight timing in the WS2811/WS2812 code means there
+// aren't enough free cycles to perform this scaling on the fly as data
+// is issued. So we make a pass through the existing color data in RAM
+// and scale it (subsequent graphics commands also work at this
+// brightness level). If there's a significant step up in brightness,
+// the limited number of steps (quantization) in the old data will be
+// quite visible in the re-scaled version. For a non-destructive
+// change, you'll need to re-render the full strip data.
+void tinyNeoPixel::setBrightness(uint8_t b) {
+ // Stored brightness value is different than what's passed.
+ // This simplifies the actual scaling math later, allowing a fast
+ // 8x8-bit multiply and taking the MSB. 'brightness' is a uint8_t,
+ // adding 1 here may (intentionally) roll over...so 0 = max brightness
+ // (color values are interpreted literally; no scaling), 1 = min
+ // brightness (off), 255 = just below max brightness.
+ uint8_t newBrightness = b + 1;
+ if (newBrightness != brightness) { // Compare against prior value
+ // Brightness has changed -- re-scale existing data in RAM
+ uint8_t c,
+ *ptr = pixels,
+ oldBrightness = brightness - 1; // De-wrap old brightness value
+ uint16_t scale;
+ if (oldBrightness == 0) {
+ scale = 0; // Avoid /0
+ } else if (b == 255) {
+ scale = 65535 / oldBrightness;
+ } else {
+ scale = (((uint16_t)newBrightness << 8) - 1) / oldBrightness;
+ }
+ for (uint16_t i = 0; i < numBytes; i++) {
+ c = *ptr;
+ *ptr++ = (c * scale) >> 8;
+ }
+ brightness = newBrightness;
+ }
+}
+
+//Return the brightness value
+uint8_t tinyNeoPixel::getBrightness(void) const {
+ return brightness - 1;
+}
+
+void tinyNeoPixel::clear() {
+ memset(pixels, 0, numBytes);
+}
+
+// A 32-bit variant of gamma8() that applies the same function
+// to all components of a packed RGB or WRGB value.
+uint32_t tinyNeoPixel::gamma32(uint32_t x) {
+ uint8_t *y = (uint8_t *)&x;
+ // All four bytes of a 32-bit value are filtered even if RGB (not WRGB),
+ // to avoid a bunch of shifting and masking that would be necessary for
+ // properly handling different endianisms (and each byte is a fairly
+ // trivial operation, so it might not even be wasting cycles vs a check
+ // and branch for the RGB case). In theory this might cause trouble *if*
+ // someone's storing information in the unused most significant byte
+ // of an RGB value, but this seems exceedingly rare and if it's
+ // encountered in reality they can mask values going in or coming out.
+ for (uint8_t i=0; i<4; i++) y[i] = gamma8(y[i]);
+ return x; // Packed 32-bit return
+}
+// *INDENT-ON*
diff --git a/lib/tinyNeoPixel_Static/tinyNeoPixel_Static.h b/lib/tinyNeoPixel_Static/tinyNeoPixel_Static.h
new file mode 100644
index 0000000..a7fddba
--- /dev/null
+++ b/lib/tinyNeoPixel_Static/tinyNeoPixel_Static.h
@@ -0,0 +1,327 @@
+/*--------------------------------------------------------------------
+ This file is part of the tinyNeoPixel library, derived from
+ Adafruit_NeoPixel.
+
+ NeoPixel is free software: you can redistribute it and/or modify
+ it under the terms of the GNU Lesser General Public License as
+ published by the Free Software Foundation, either version 3 of
+ the License, or (at your option) any later version.
+
+ NeoPixel is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with NeoPixel. If not, see
+ .
+ --------------------------------------------------------------------*/
+// *INDENT-OFF* astyle hates this file
+// *PAD-OFF* and destroys the lookup tables!
+
+#ifndef TINYNEOPIXEL_H
+#define TINYNEOPIXEL_H
+
+#include
+
+#if (__AVR_ARCH__ < 100)
+ #error "This version of the library only supports AVRxt parts (tinyAVR 0/1/2-series, megaAVR 0-series and the AVR DA/DB/DD parts. For tinyNeoPixel, for classic AVR, get from ATTinyCore package"
+#endif
+
+// The order of primary colors in the NeoPixel data stream can vary
+// among device types, manufacturers and even different revisions of
+// the same item. The third parameter to the Adafruit_NeoPixel
+// constructor encodes the per-pixel byte offsets of the red, green
+// and blue primaries (plus white, if present) in the data stream --
+// the following #defines provide an easier-to-use named version for
+// each permutation. e.g. NEO_GRB indicates a NeoPixel-compatible
+// device expecting three bytes per pixel, with the first byte
+// containing the green value, second containing red and third
+// containing blue. The in-memory representation of a chain of
+// NeoPixels is the same as the data-stream order; no re-ordering of
+// bytes is required when issuing data to the chain.
+
+// Bits 5,4 of this value are the offset (0-3) from the first byte of
+// a pixel to the location of the red color byte. Bits 3,2 are the
+// green offset and 1,0 are the blue offset. If it is an RGBW-type
+// device (supporting a white primary in addition to R,G,B), bits 7,6
+// are the offset to the white byte...otherwise, bits 7,6 are set to
+// the same value as 5,4 (red) to indicate an RGB (not RGBW) device.
+// i.e. binary representation:
+// 0bWWRRGGBB for RGBW devices
+// 0bRRRRGGBB for RGB
+
+// RGB NeoPixel permutations; white and red offsets are always same
+// Offset: W R G B
+#define NEO_RGB ((0 << 6) | (0 << 4) | (1 << 2) | (2))
+#define NEO_RBG ((0 << 6) | (0 << 4) | (2 << 2) | (1))
+#define NEO_GRB ((1 << 6) | (1 << 4) | (0 << 2) | (2))
+#define NEO_GBR ((2 << 6) | (2 << 4) | (0 << 2) | (1))
+#define NEO_BRG ((1 << 6) | (1 << 4) | (2 << 2) | (0))
+#define NEO_BGR ((2 << 6) | (2 << 4) | (1 << 2) | (0))
+
+// RGBW NeoPixel permutations; all 4 offsets are distinct
+// Offset: W R G B
+#define NEO_WRGB ((0 << 6) | (1 << 4) | (2 << 2) | (3))
+#define NEO_WRBG ((0 << 6) | (1 << 4) | (3 << 2) | (2))
+#define NEO_WGRB ((0 << 6) | (2 << 4) | (1 << 2) | (3))
+#define NEO_WGBR ((0 << 6) | (3 << 4) | (1 << 2) | (2))
+#define NEO_WBRG ((0 << 6) | (2 << 4) | (3 << 2) | (1))
+#define NEO_WBGR ((0 << 6) | (3 << 4) | (2 << 2) | (1))
+
+#define NEO_RWGB ((1 << 6) | (0 << 4) | (2 << 2) | (3))
+#define NEO_RWBG ((1 << 6) | (0 << 4) | (3 << 2) | (2))
+#define NEO_RGWB ((2 << 6) | (0 << 4) | (1 << 2) | (3))
+#define NEO_RGBW ((3 << 6) | (0 << 4) | (1 << 2) | (2))
+#define NEO_RBWG ((2 << 6) | (0 << 4) | (3 << 2) | (1))
+#define NEO_RBGW ((3 << 6) | (0 << 4) | (2 << 2) | (1))
+
+#define NEO_GWRB ((1 << 6) | (2 << 4) | (0 << 2) | (3))
+#define NEO_GWBR ((1 << 6) | (3 << 4) | (0 << 2) | (2))
+#define NEO_GRWB ((2 << 6) | (1 << 4) | (0 << 2) | (3))
+#define NEO_GRBW ((3 << 6) | (1 << 4) | (0 << 2) | (2))
+#define NEO_GBWR ((2 << 6) | (3 << 4) | (0 << 2) | (1))
+#define NEO_GBRW ((3 << 6) | (2 << 4) | (0 << 2) | (1))
+
+#define NEO_BWRG ((1 << 6) | (2 << 4) | (3 << 2) | (0))
+#define NEO_BWGR ((1 << 6) | (3 << 4) | (2 << 2) | (0))
+#define NEO_BRWG ((2 << 6) | (1 << 4) | (3 << 2) | (0))
+#define NEO_BRGW ((3 << 6) | (1 << 4) | (2 << 2) | (0))
+#define NEO_BGWR ((2 << 6) | (3 << 4) | (1 << 2) | (0))
+#define NEO_BGRW ((3 << 6) | (2 << 4) | (1 << 2) | (0))
+
+#define NEO_KHZ800 0x0000 ///< 800 KHz data transmission
+
+// 400 kHz neopixels are virtually absent from the market today
+// They are not supported.
+
+// These two tables are declared outside the Adafruit_NeoPixel class
+// because some boards may require oldschool compilers that don't
+// handle the C++11 constexpr keyword.
+
+/* A pre-calculated 8-bit sine look-up table stored in flash for use
+with the sine8() function. This is apparently of use in some animation
+algorithms. If __AVR_ARCH__==103, then all of the flash is memory
+mapped, and we can simply declare it const, access it like a
+normal variable, and it won't be copied to RAM.
+
+AVRxt devices with too much flash for all of it to be mapped
+which includes the AVR64Dx and AVR128Dx parts. DxCore defines a
+.section for the area of PROGMEM that is mapped by default, and
+a MAPPED_PROGMEM macro. A variable declared const MAPPED_PROGMEM can
+be accessed normally, but will be stored in the flash and not copied to RAM.
+
+Finally, if neither of those are an option - it gets declared with PROGMEM
+
+
+ Copy & paste this snippet into a Python REPL to regenerate:
+import math
+for x in range(256):
+ print("{:3},".format(int((math.sin(x/128.0*math.pi)+1.0)*127.5+0.5))),
+ if x&15 == 15: print
+*/
+#if (__AVR_ARCH__==103)
+ // All out flash is mapped - yay!
+ static const uint8_t _NeoPixelSineTable[256] = {
+#elif defined(MAPPED_PROGMEM)
+ // Some of it is - but we can put stuff there - yay!
+ static const uint8_t MAPPED_PROGMEM _NeoPixelSineTable[256] = {
+#else
+ // Back to progmem...
+ static const uint8_t PROGMEM _NeoPixelSineTable[256] = {
+#endif
+ 128,131,134,137,140,143,146,149,152,155,158,162,165,167,170,173,
+ 176,179,182,185,188,190,193,196,198,201,203,206,208,211,213,215,
+ 218,220,222,224,226,228,230,232,234,235,237,238,240,241,243,244,
+ 245,246,248,249,250,250,251,252,253,253,254,254,254,255,255,255,
+ 255,255,255,255,254,254,254,253,253,252,251,250,250,249,248,246,
+ 245,244,243,241,240,238,237,235,234,232,230,228,226,224,222,220,
+ 218,215,213,211,208,206,203,201,198,196,193,190,188,185,182,179,
+ 176,173,170,167,165,162,158,155,152,149,146,143,140,137,134,131,
+ 128,124,121,118,115,112,109,106,103,100, 97, 93, 90, 88, 85, 82,
+ 79, 76, 73, 70, 67, 65, 62, 59, 57, 54, 52, 49, 47, 44, 42, 40,
+ 37, 35, 33, 31, 29, 27, 25, 23, 21, 20, 18, 17, 15, 14, 12, 11,
+ 10, 9, 7, 6, 5, 5, 4, 3, 2, 2, 1, 1, 1, 0, 0, 0,
+ 0, 0, 0, 0, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 9,
+ 10, 11, 12, 14, 15, 17, 18, 20, 21, 23, 25, 27, 29, 31, 33, 35,
+ 37, 40, 42, 44, 47, 49, 52, 54, 57, 59, 62, 65, 67, 70, 73, 76,
+ 79, 82, 85, 88, 90, 93, 97,100,103,106,109,112,115,118,121,124};
+
+/* Similar to above, but for an 8-bit gamma-correction table.
+ Copy & paste this snippet into a Python REPL to regenerate:
+import math
+gamma=2.6
+for x in range(256):
+ print("{:3},".format(int(math.pow((x)/255.0,gamma)*255.0+0.5))),
+ if x&15 == 15: print
+*/
+#if (__AVR_ARCH__==103)
+ // All our flash is mapped - yay!
+ static const uint8_t _NeoPixelGammaTable[256] = {
+#elif defined(MAPPED_PROGMEM)
+ // Some of it is - but we can put stuff there - yay!
+ static const uint8_t MAPPED_PROGMEM _NeoPixelGammaTable[256] = {
+#else
+ // Back to progmem...
+ static const uint8_t PROGMEM _NeoPixelGammaTable[256] = {
+#endif
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
+ 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3,
+ 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7,
+ 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12,
+ 13, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20,
+ 20, 21, 21, 22, 22, 23, 24, 24, 25, 25, 26, 27, 27, 28, 29, 29,
+ 30, 31, 31, 32, 33, 34, 34, 35, 36, 37, 38, 38, 39, 40, 41, 42,
+ 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
+ 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 75,
+ 76, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93, 94, 96,
+ 97, 99,100,102,103,105,106,108,109,111,112,114,115,117,119,120,
+ 122,124,125,127,129,130,132,134,136,137,139,141,143,145,146,148,
+ 150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,
+ 182,184,186,188,191,193,195,197,199,202,204,206,209,211,213,215,
+ 218,220,223,225,227,230,232,235,237,240,242,245,247,250,252,255};
+
+
+typedef uint8_t neoPixelType;
+
+class tinyNeoPixel {
+
+ public:
+
+ // Constructor: number of LEDs, pin number, LED type
+ tinyNeoPixel(uint16_t n, uint8_t p, neoPixelType t, uint8_t *pxl);
+ ~tinyNeoPixel();
+
+ void
+ show(void),
+ setPin(uint8_t p),
+ setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b),
+ setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b, uint8_t w),
+ setPixelColor(uint16_t n, uint32_t c),
+ fill(uint32_t c=0, uint16_t first=0, uint16_t count=0),
+ setBrightness(uint8_t b),
+ clear();
+ uint8_t
+ *getPixels(void) const,
+ getBrightness(void) const;
+ uint16_t
+ numPixels(void) const;
+ uint32_t
+ getPixelColor(uint16_t n) const;
+ uint8_t getPin(void) { return pin; }
+ void begin(void) {return;}
+ /*!
+ @brief An 8-bit integer sine wave function, not directly compatible
+ with standard trigonometric units like radians or degrees.
+ @param x Input angle, 0-255; 256 would loop back to zero, completing
+ the circle (equivalent to 360 degrees or 2 pi radians).
+ One can therefore use an unsigned 8-bit variable and simply
+ add or subtract, allowing it to overflow/underflow and it
+ still does the expected contiguous thing.
+ @return Sine result, 0 to 255, or -128 to +127 if type-converted to
+ a signed int8_t, but you'll most likely want unsigned as this
+ output is often used for pixel brightness in animation effects.
+ */
+ static uint8_t sine8(uint8_t x) { // 0-255 in, 0-255 out
+ #if (__AVR_ARCH__==103 || defined(MAPPED_PROGMEM))
+ return _NeoPixelSineTable[x];
+ #else // We had to put it in PROGMEM, and that's how we get it out
+ return pgm_read_byte(&_NeoPixelSineTable[x]); // 0-255 in, 0-255 out
+ #endif
+ }
+
+ /*!
+ @brief An 8-bit gamma-correction function for basic pixel brightness
+ adjustment. Makes color transitions appear more perceptially
+ correct.
+ @param x Input brightness, 0 (minimum or off/black) to 255 (maximum).
+ @return Gamma-adjusted brightness, can then be passed to one of the
+ setPixelColor() functions. This uses a fixed gamma correction
+ exponent of 2.6, which seems reasonably okay for average
+ NeoPixels in average tasks. If you need finer control you'll
+ need to provide your own gamma-correction function instead.
+ */
+
+ static uint8_t gamma8(uint8_t x) {
+ #if (__AVR_ARCH__==103 || defined(MAPPED_PROGMEM))
+ return _NeoPixelGammaTable[x];
+ #else
+ return pgm_read_byte(&_NeoPixelGammaTable[x]);
+ #endif
+ }
+ /*!
+ @brief Convert separate red, green and blue values into a single
+ "packed" 32-bit RGB color.
+ @param r Red brightness, 0 to 255.
+ @param g Green brightness, 0 to 255.
+ @param b Blue brightness, 0 to 255.
+ @return 32-bit packed RGB value, which can then be assigned to a
+ variable for later use or passed to the setPixelColor()
+ function. Packed RGB format is predictable, regardless of
+ LED strand color order.
+ */
+ static uint32_t Color(uint8_t r, uint8_t g, uint8_t b) {
+ return ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
+ }
+ /*!
+ @brief Convert separate red, green, blue and white values into a
+ single "packed" 32-bit WRGB color.
+ @param r Red brightness, 0 to 255.
+ @param g Green brightness, 0 to 255.
+ @param b Blue brightness, 0 to 255.
+ @param w White brightness, 0 to 255.
+ @return 32-bit packed WRGB value, which can then be assigned to a
+ variable for later use or passed to the setPixelColor()
+ function. Packed WRGB format is predictable, regardless of
+ LED strand color order.
+ */
+ static uint32_t Color(uint8_t r, uint8_t g, uint8_t b, uint8_t w) {
+ return ((uint32_t)w << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
+ }
+ static uint32_t ColorHSV(uint16_t hue, uint8_t sat=255, uint8_t val=255);
+ /*!
+ @brief A gamma-correction function for 32-bit packed RGB or WRGB
+ colors. Makes color transitions appear more perceptially
+ correct.
+ @param x 32-bit packed RGB or WRGB color.
+ @return Gamma-adjusted packed color, can then be passed in one of the
+ setPixelColor() functions. Like gamma8(), this uses a fixed
+ gamma correction exponent of 2.6, which seems reasonably okay
+ for average NeoPixels in average tasks. If you need finer
+ control you'll need to provide your own gamma-correction
+ function instead.
+ */
+ static uint32_t gamma32(uint32_t x);
+
+ #if (!defined(DISABLEMILLIS) && !defined(MILLIS_USE_TIMERRTC) && !defined(MILLIS_USE_TIMERRTC_XTAL) && !defined(MILLIS_USE_TIMERRTC_XOSC))
+ inline bool canShow(void) { return (micros() - endTime) >= 50L; }
+ #else
+ inline bool canShow(void) {return 1;} //we don't have micros here;
+ #endif
+
+
+ private:
+
+ uint16_t
+ numLEDs, // Number of RGB LEDs in strip
+ numBytes; // Size of 'pixels' buffer below (3 or 4 bytes/pixel)
+ int8_t
+ pin; // Output pin number (-1 if not yet set)
+ uint8_t
+ brightness,
+ *pixels, // Holds LED color values (3 or 4 bytes each)
+ rOffset, // Index of red byte within each 3- or 4-byte pixel
+ gOffset, // Index of green byte
+ bOffset, // Index of blue byte
+ wOffset; // Index of white byte (same as rOffset if no white)
+ uint32_t
+ endTime; // Latch timing reference
+ volatile uint8_t
+ *port; // Output PORT register
+ uint8_t
+ pinMask; // Output PORT bitmask
+
+};
+
+#endif // TINYNEOPIXEL_H
diff --git a/platformio.ini b/platformio.ini
index 9bc3ed1..2d2c790 100644
--- a/platformio.ini
+++ b/platformio.ini
@@ -13,15 +13,17 @@ platform = atmelmegaavr
board = ATtiny3216
framework = arduino
-# Board Config
-board_build.f_cpu = 5000000L
+## Board Config ##
+# You might want to set f_cpu to 5MHz (5000000L) to allow operation at lower Battery Voltage - Use "Burn Fuses" after changing f_cpu
+# Be aware that some Functions (like WS2812B LED Support) will not work at 5 HMz
+board_build.f_cpu = 8000000L
board_hardware.oscillator = internal
board_hardware.bod = disabled
-# Debug Port Config
+## Debug Port Config ##
monitor_speed = 115200
-# LMIC Config via Build Flags
+## LMIC Config via Build Flags ##
build_flags =
-D CFG_eu868
-D CFG_sx1276_radio
@@ -29,7 +31,7 @@ build_flags =
-D DISABLE_BEACONS
-D ARDUINO_LMIC_PROJECT_CONFIG_H_SUPPRESS
-# Programmer Config (MicroUPDI)
+## Programmer Config (MicroUPDI) ##
upload_port = usb
upload_protocol = xplainedmini_updi
upload_flags =
@@ -37,5 +39,6 @@ upload_flags =
-P$UPLOAD_PORT
-c$UPLOAD_PROTOCOL
+## External Libraries ##
lib_deps =
- mcci-catena/MCCI LoRaWAN LMIC library @ ^3.3.0
+ mcci-catena/MCCI LoRaWAN LMIC library @ ^3.3.0
\ No newline at end of file
diff --git a/src/config.h.example b/src/config.h.example
index 6791f96..3674f35 100644
--- a/src/config.h.example
+++ b/src/config.h.example
@@ -4,6 +4,15 @@
// ATTNode v3 Onboard LED is on PIN_PA7
#define LED_PIN PIN_PA7
+// Enable WS2812B RGB LED Support for the CO2 Addon Board
+// * First LED shows CO2-Level (green: <1000, yellow: 1000-1800, red: >=1800)
+// * Second LED shows LoRa Status (yellow: Joining, green 1s: Joined, green 100ms: Sending, blue 250ms: Received Downlink)
+// WS2812B_BRIGHT can be set to the desired brightness value for the LEDs (0=off, 255=brightest)
+// Uncomment the 3 following lines to get the default behaviour
+// #define WS2812B_PIN PIN_PC1
+// #define WS2812B_NUM 2
+// #define WS2812B_BRIGHT 32
+
// Enable Serial Debugging. Parameters for the Serial Port are 115200
// Please be aware that the SG112A/B CO2 Sensor uses the HW-UART, so
// Serial Debug Output is not available with this Sensor.
diff --git a/src/main.cpp b/src/main.cpp
index 339372d..59da31c 100644
--- a/src/main.cpp
+++ b/src/main.cpp
@@ -31,6 +31,20 @@ void blink(uint8_t num) {
#define BLINK_LED(COUNT)
#endif
+// WS2812B RGB LEDs on the CO2 Addon Board
+// Defines the Macro Function WS2812B_SETLED so we don't need #ifdefs everywhere
+#ifdef WS2812B_PIN
+ #include
+ byte pixels[WS2812B_NUM * 3];
+ tinyNeoPixel leds = tinyNeoPixel(WS2812B_NUM, WS2812B_PIN, NEO_GRB, pixels);
+ #define WS2812B_SETLED(led,r,g,b) leds.setPixelColor(led,r,g,b); leds.show()
+ #define WS2812B_BLINK(led,r,g,b,ms) leds.setPixelColor(led,r,g,b); leds.show(); delay(ms); leds.setPixelColor(led,0,0,0); leds.show()
+#else
+ #define WS2812B_SETLED(led,r,g,b)
+ #define WS2812B_BLINK(led,r,g,b,ms)
+#endif
+
+// Create the Sensor Objects
#if defined HAS_NO_SENSOR
struct lora_data {
uint8_t bat;
@@ -109,12 +123,13 @@ void onEvent(ev_t ev) {
case EV_JOINED:
// Disable LinkCheck
LMIC_setLinkCheckMode(0);
- BLINK_LED(2);
+ WS2812B_BLINK(1,0,127,0,1000);
DEBUG_PRINTLN("OTAA Join Succeeded");
break;
case EV_TXCOMPLETE:
// Check for Downlink
DEBUG_PRINTLN("LoRa Packet Sent");
+ WS2812B_BLINK(1,0,127,0,1000);
if ((int)LMIC.dataLen == 2) {
// We got a Packet with the right size - lets assemble it into a uint16_t
DEBUG_PRINTLN("Received Downlink")
@@ -123,6 +138,7 @@ void onEvent(ev_t ev) {
DEBUG_PRINTLN(tmpslp);
sleep_time = tmpslp;
EEPROM.put(ADDR_SLP, tmpslp);
+ WS2812B_BLINK(1,0,0,127,250);
}
// Got to sleep for specified Time
@@ -169,11 +185,31 @@ void do_send(osjob_t* j) {
// Get Sensor Readings Into Data Paket
#ifndef HAS_NO_SENSOR
sensor.getSensorData(data);
- #endif
-
+
// Queue Packet for Sending
DEBUG_PRINTLN("LoRa-Packet Queued");
LMIC_setTxData2(1, (unsigned char *)&data, sizeof(data), 0);
+
+ #if defined WS2812B_PIN && (defined HAS_SG112A || defined HAS_MHZ19C)
+
+ // CO2 PPM Levels and LED Colors
+ // < 1000 ppm green
+ // < 1800 ppm yellow
+ // > 1000 ppm red
+
+ if (data.ppm > 0 && data.ppm <= 1000) {
+ WS2812B_SETLED(0,0,127,0);
+ } else if (data.ppm > 1000 && data.ppm <= 1800) {
+ WS2812B_SETLED(0,127,127,0);
+ } else if (data.ppm > 1800) {
+ WS2812B_SETLED(0,127,0,0);
+ } else {
+ WS2812B_SETLED(0,0,0,0);
+ }
+ #endif // WS2812B
+ #endif // #infdef HAS_NO_SENSOR
+
+
}
}
@@ -186,10 +222,15 @@ void setup()
Wire.begin();
SPI.begin();
- // Disable unused Pins (for power saving)
+ // Disable unused Pins (for power saving)
for (int i = 0; i < (sizeof(disabledPins) / sizeof(disabledPins[0])) - 1; i++)
pinMode(disabledPins[i], INPUT_PULLUP);
+ #ifdef WS2812B_PIN
+ pinMode(WS2812B_PIN, OUTPUT);
+ leds.setBrightness(WS2812B_BRIGHT);
+ #endif
+
// Set RTC
while (RTC.STATUS > 0) {}
RTC.CLKSEL = RTC_CLKSEL_INT1K_gc;
@@ -225,6 +266,7 @@ void setup()
DEBUG_PRINTLN("Setup Finished");
// Schedule First Send (Triggers OTAA Join as well)
+ WS2812B_SETLED(1,127,127,0);
do_send(&sendjob);
}