Add DS18B20 Support

This commit is contained in:
seiichiro 2021-03-28 14:47:50 +02:00
parent e9067dd4a3
commit 02acd85716
10 changed files with 1447 additions and 11 deletions

View file

@ -35,6 +35,9 @@ is filled in ascending order, starting with the first enabled sensor from left t
// Atmospheric Pressure (BME280)
// decoded.p = ((input.bytes[ii]) | (input.bytes[ii] << 8 ) | (input.bytes[ii] << 16 ) | (input.bytes[ii] << 24)) / 100.0;
// DS18B20 (add as many lines as you have sensors, changing the t1)
// decoded.t1 = ((input.bytes[ii]) | (input.bytes[ii] << 8 )) / 100.0;
// Leave this part as is
return {

View file

@ -5,6 +5,8 @@ DebugUtils.h - Simple debugging utilities.
#ifndef DEBUGUTILS_H
#define DEBUGUTILS_H
#include "config.h"
#ifdef DEBUG
#define DEBUG_PRINT(...) Serial.print(__VA_ARGS__); Serial.flush();
#define DEBUG_PRINTLN(...) Serial.println(__VA_ARGS__); Serial.flush();

122
lib/DS18B20/DS18B20.cpp Normal file
View file

@ -0,0 +1,122 @@
/*
DS18B20.cpp - Dallas 1-Wire Temperature Sensor Library
Copyright (c) 2020-2021, Stefan Brand
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "DS18B20.h"
DS18B20::DS18B20(uint8_t owpin, uint8_t resbits = 12, bool para = false) {
onewire = new OneWire(owpin);
parasite = para;
switch(resbits) {
case 9 :
resolution = DS18B20_9_BIT;
convtime = 100;
break;
case 10 :
resolution = DS18B20_10_BIT;
convtime = 200;
break;
case 11 :
resolution = DS18B20_11_BIT;
convtime = 400;
break;
default :
resolution = DS18B20_12_BIT;
convtime = 800;
}
}
void DS18B20::initialize(void){
onewire->reset();
onewire->reset_search();
sensorcount = 0;
delay(250);
while (onewire->search(addr)) {
if (OneWire::crc8( addr, 7) == addr[7] && addr[0] != 0x00) {
sensorcount++;
setResolution();
}
}
}
uint8_t DS18B20::numBytes(void){
return sensorcount * 2;
}
void DS18B20::setResolution(void) {
// Write Scratchpad
onewire->reset();
onewire->select(addr);
onewire->write(0x4E);
// Dummy Alarm Values (not used)
onewire->write(0);
onewire->write(100);
// Write Resolution
onewire->write(resolution);
onewire->reset();
}
uint8_t DS18B20::getSensorData(char *payload, uint8_t startbyte){
uint8_t data[9];
int16_t value;
// Start Conversation on all Sensors
onewire->reset();
onewire->skip();
onewire->write(0x44,parasite);
// Wait for Conversion to Finish
delay(convtime);
// Read Temperature from all Sensors
onewire->reset_search();
while (onewire->search(addr)) {
if (OneWire::crc8(addr, 7) == addr[7] && addr[0] != 0x00) {
// Get Data
onewire->reset();
onewire->select(addr);
onewire->write(0xBE);
for (uint8_t i = 0; i < 9; i++)
data[i] = onewire->read();
onewire->reset();
if (OneWire::crc8(data, 8) == data[8]) {
int16_t rawTemp = (((int16_t)data[1]) << 8) | data[0];
value = ((float)0.0625*rawTemp)*100;
} else {
value = -85;
}
// Add to Payload
payload[startbyte] = (value) & 0XFF;
payload[startbyte+1] = (value >> 8) & 0XFF;
// Set next Startbyte
startbyte += 2;
}
}
return startbyte;
}

57
lib/DS18B20/DS18B20.h Normal file
View file

@ -0,0 +1,57 @@
/*
DS18B20.h - Dallas 1-Wire Temperature Sensor Library
Copyright (c) 2020-2021, Stefan Brand
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef DS18B20_H
#define DS18B20_H
#include "../../include/attsensor.h"
#include <OneWire.h>
// Sensor Resolutions
#define DS18B20_9_BIT 0x1F
#define DS18B20_10_BIT 0x3F
#define DS18B20_11_BIT 0x5F
#define DS18B20_12_BIT 0x7F
class DS18B20 : public AttSensor {
private:
OneWire *onewire;
uint8_t addr[8];
uint8_t sensorcount = 0;
uint8_t resolution = DS18B20_12_BIT;
uint8_t convtime = 750;
bool parasite;
void setResolution(void);
public:
DS18B20(uint8_t owpin, uint8_t resbits = 12, bool para = false);
uint8_t getSensorData(char *payload, uint8_t startbyte);
void initialize(void);
uint8_t numBytes(void);
};
#endif

580
lib/OneWire/OneWire.cpp Normal file
View file

@ -0,0 +1,580 @@
/*
Copyright (c) 2007, Jim Studt (original old version - many contributors since)
The latest version of this library may be found at:
http://www.pjrc.com/teensy/td_libs_OneWire.html
OneWire has been maintained by Paul Stoffregen (paul@pjrc.com) since
January 2010.
DO NOT EMAIL for technical support, especially not for ESP chips!
All project support questions must be posted on public forums
relevant to the board or chips used. If using Arduino, post on
Arduino's forum. If using ESP, post on the ESP community forums.
There is ABSOLUTELY NO TECH SUPPORT BY PRIVATE EMAIL!
Github's issue tracker for OneWire should be used only to report
specific bugs. DO NOT request project support via Github. All
project and tech support questions must be posted on forums, not
github issues. If you experience a problem and you are not
absolutely sure it's an issue with the library, ask on a forum
first. Only use github to report issues after experts have
confirmed the issue is with OneWire rather than your project.
Back in 2010, OneWire was in need of many bug fixes, but had
been abandoned the original author (Jim Studt). None of the known
contributors were interested in maintaining OneWire. Paul typically
works on OneWire every 6 to 12 months. Patches usually wait that
long. If anyone is interested in more actively maintaining OneWire,
please contact Paul (this is pretty much the only reason to use
private email about OneWire).
OneWire is now very mature code. No changes other than adding
definitions for newer hardware support are anticipated.
Version 2.3:
Unknown chip fallback mode, Roger Clark
Teensy-LC compatibility, Paul Stoffregen
Search bug fix, Love Nystrom
Version 2.2:
Teensy 3.0 compatibility, Paul Stoffregen, paul@pjrc.com
Arduino Due compatibility, http://arduino.cc/forum/index.php?topic=141030
Fix DS18B20 example negative temperature
Fix DS18B20 example's low res modes, Ken Butcher
Improve reset timing, Mark Tillotson
Add const qualifiers, Bertrik Sikken
Add initial value input to crc16, Bertrik Sikken
Add target_search() function, Scott Roberts
Version 2.1:
Arduino 1.0 compatibility, Paul Stoffregen
Improve temperature example, Paul Stoffregen
DS250x_PROM example, Guillermo Lovato
PIC32 (chipKit) compatibility, Jason Dangel, dangel.jason AT gmail.com
Improvements from Glenn Trewitt:
- crc16() now works
- check_crc16() does all of calculation/checking work.
- Added read_bytes() and write_bytes(), to reduce tedious loops.
- Added ds2408 example.
Delete very old, out-of-date readme file (info is here)
Version 2.0: Modifications by Paul Stoffregen, January 2010:
http://www.pjrc.com/teensy/td_libs_OneWire.html
Search fix from Robin James
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27
Use direct optimized I/O in all cases
Disable interrupts during timing critical sections
(this solves many random communication errors)
Disable interrupts during read-modify-write I/O
Reduce RAM consumption by eliminating unnecessary
variables and trimming many to 8 bits
Optimize both crc8 - table version moved to flash
Modified to work with larger numbers of devices - avoids loop.
Tested in Arduino 11 alpha with 12 sensors.
26 Sept 2008 -- Robin James
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27
Updated to work with arduino-0008 and to include skip() as of
2007/07/06. --RJL20
Modified to calculate the 8-bit CRC directly, avoiding the need for
the 256-byte lookup table to be loaded in RAM. Tested in arduino-0010
-- Tom Pollard, Jan 23, 2008
Jim Studt's original library was modified by Josh Larios.
Tom Pollard, pollard@alum.mit.edu, contributed around May 20, 2008
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Much of the code was inspired by Derek Yerger's code, though I don't
think much of that remains. In any event that was..
(copyleft) 2006 by Derek Yerger - Free to distribute freely.
The CRC code was excerpted and inspired by the Dallas Semiconductor
sample code bearing this copyright.
//---------------------------------------------------------------------------
// Copyright (C) 2000 Dallas Semiconductor Corporation, All Rights Reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL DALLAS SEMICONDUCTOR BE LIABLE FOR ANY CLAIM, DAMAGES
// OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
// Except as contained in this notice, the name of Dallas Semiconductor
// shall not be used except as stated in the Dallas Semiconductor
// Branding Policy.
//--------------------------------------------------------------------------
*/
#include <Arduino.h>
#include "OneWire.h"
#include "util/OneWire_direct_gpio.h"
void OneWire::begin(uint8_t pin)
{
pinMode(pin, INPUT);
bitmask = PIN_TO_BITMASK(pin);
baseReg = PIN_TO_BASEREG(pin);
#if ONEWIRE_SEARCH
reset_search();
#endif
}
// Perform the onewire reset function. We will wait up to 250uS for
// the bus to come high, if it doesn't then it is broken or shorted
// and we return a 0;
//
// Returns 1 if a device asserted a presence pulse, 0 otherwise.
//
uint8_t OneWire::reset(void)
{
IO_REG_TYPE mask IO_REG_MASK_ATTR = bitmask;
volatile IO_REG_TYPE *reg IO_REG_BASE_ATTR = baseReg;
uint8_t r;
uint8_t retries = 125;
noInterrupts();
DIRECT_MODE_INPUT(reg, mask);
interrupts();
// wait until the wire is high... just in case
do {
if (--retries == 0) return 0;
delayMicroseconds(2);
} while ( !DIRECT_READ(reg, mask));
noInterrupts();
DIRECT_WRITE_LOW(reg, mask);
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
interrupts();
delayMicroseconds(480);
noInterrupts();
DIRECT_MODE_INPUT(reg, mask); // allow it to float
delayMicroseconds(70);
r = !DIRECT_READ(reg, mask);
interrupts();
delayMicroseconds(410);
return r;
}
//
// Write a bit. Port and bit is used to cut lookup time and provide
// more certain timing.
//
void OneWire::write_bit(uint8_t v)
{
IO_REG_TYPE mask IO_REG_MASK_ATTR = bitmask;
volatile IO_REG_TYPE *reg IO_REG_BASE_ATTR = baseReg;
if (v & 1) {
noInterrupts();
DIRECT_WRITE_LOW(reg, mask);
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
delayMicroseconds(10);
DIRECT_WRITE_HIGH(reg, mask); // drive output high
interrupts();
delayMicroseconds(55);
} else {
noInterrupts();
DIRECT_WRITE_LOW(reg, mask);
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
delayMicroseconds(65);
DIRECT_WRITE_HIGH(reg, mask); // drive output high
interrupts();
delayMicroseconds(5);
}
}
//
// Read a bit. Port and bit is used to cut lookup time and provide
// more certain timing.
//
uint8_t OneWire::read_bit(void)
{
IO_REG_TYPE mask IO_REG_MASK_ATTR = bitmask;
volatile IO_REG_TYPE *reg IO_REG_BASE_ATTR = baseReg;
uint8_t r;
noInterrupts();
DIRECT_MODE_OUTPUT(reg, mask);
DIRECT_WRITE_LOW(reg, mask);
delayMicroseconds(3);
DIRECT_MODE_INPUT(reg, mask); // let pin float, pull up will raise
delayMicroseconds(10);
r = DIRECT_READ(reg, mask);
interrupts();
delayMicroseconds(53);
return r;
}
//
// Write a byte. The writing code uses the active drivers to raise the
// pin high, if you need power after the write (e.g. DS18S20 in
// parasite power mode) then set 'power' to 1, otherwise the pin will
// go tri-state at the end of the write to avoid heating in a short or
// other mishap.
//
void OneWire::write(uint8_t v, uint8_t power /* = 0 */) {
uint8_t bitMask;
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
OneWire::write_bit( (bitMask & v)?1:0);
}
if ( !power) {
noInterrupts();
DIRECT_MODE_INPUT(baseReg, bitmask);
DIRECT_WRITE_LOW(baseReg, bitmask);
interrupts();
}
}
void OneWire::write_bytes(const uint8_t *buf, uint16_t count, bool power /* = 0 */) {
for (uint16_t i = 0 ; i < count ; i++)
write(buf[i]);
if (!power) {
noInterrupts();
DIRECT_MODE_INPUT(baseReg, bitmask);
DIRECT_WRITE_LOW(baseReg, bitmask);
interrupts();
}
}
//
// Read a byte
//
uint8_t OneWire::read() {
uint8_t bitMask;
uint8_t r = 0;
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
if ( OneWire::read_bit()) r |= bitMask;
}
return r;
}
void OneWire::read_bytes(uint8_t *buf, uint16_t count) {
for (uint16_t i = 0 ; i < count ; i++)
buf[i] = read();
}
//
// Do a ROM select
//
void OneWire::select(const uint8_t rom[8])
{
uint8_t i;
write(0x55); // Choose ROM
for (i = 0; i < 8; i++) write(rom[i]);
}
//
// Do a ROM skip
//
void OneWire::skip()
{
write(0xCC); // Skip ROM
}
void OneWire::depower()
{
noInterrupts();
DIRECT_MODE_INPUT(baseReg, bitmask);
interrupts();
}
#if ONEWIRE_SEARCH
//
// You need to use this function to start a search again from the beginning.
// You do not need to do it for the first search, though you could.
//
void OneWire::reset_search()
{
// reset the search state
LastDiscrepancy = 0;
LastDeviceFlag = false;
LastFamilyDiscrepancy = 0;
for(int i = 7; ; i--) {
ROM_NO[i] = 0;
if ( i == 0) break;
}
}
// Setup the search to find the device type 'family_code' on the next call
// to search(*newAddr) if it is present.
//
void OneWire::target_search(uint8_t family_code)
{
// set the search state to find SearchFamily type devices
ROM_NO[0] = family_code;
for (uint8_t i = 1; i < 8; i++)
ROM_NO[i] = 0;
LastDiscrepancy = 64;
LastFamilyDiscrepancy = 0;
LastDeviceFlag = false;
}
//
// Perform a search. If this function returns a '1' then it has
// enumerated the next device and you may retrieve the ROM from the
// OneWire::address variable. If there are no devices, no further
// devices, or something horrible happens in the middle of the
// enumeration then a 0 is returned. If a new device is found then
// its address is copied to newAddr. Use OneWire::reset_search() to
// start over.
//
// --- Replaced by the one from the Dallas Semiconductor web site ---
//--------------------------------------------------------------------------
// Perform the 1-Wire Search Algorithm on the 1-Wire bus using the existing
// search state.
// Return TRUE : device found, ROM number in ROM_NO buffer
// FALSE : device not found, end of search
//
bool OneWire::search(uint8_t *newAddr, bool search_mode /* = true */)
{
uint8_t id_bit_number;
uint8_t last_zero, rom_byte_number;
bool search_result;
uint8_t id_bit, cmp_id_bit;
unsigned char rom_byte_mask, search_direction;
// initialize for search
id_bit_number = 1;
last_zero = 0;
rom_byte_number = 0;
rom_byte_mask = 1;
search_result = false;
// if the last call was not the last one
if (!LastDeviceFlag) {
// 1-Wire reset
if (!reset()) {
// reset the search
LastDiscrepancy = 0;
LastDeviceFlag = false;
LastFamilyDiscrepancy = 0;
return false;
}
// issue the search command
if (search_mode == true) {
write(0xF0); // NORMAL SEARCH
} else {
write(0xEC); // CONDITIONAL SEARCH
}
// loop to do the search
do
{
// read a bit and its complement
id_bit = read_bit();
cmp_id_bit = read_bit();
// check for no devices on 1-wire
if ((id_bit == 1) && (cmp_id_bit == 1)) {
break;
} else {
// all devices coupled have 0 or 1
if (id_bit != cmp_id_bit) {
search_direction = id_bit; // bit write value for search
} else {
// if this discrepancy if before the Last Discrepancy
// on a previous next then pick the same as last time
if (id_bit_number < LastDiscrepancy) {
search_direction = ((ROM_NO[rom_byte_number] & rom_byte_mask) > 0);
} else {
// if equal to last pick 1, if not then pick 0
search_direction = (id_bit_number == LastDiscrepancy);
}
// if 0 was picked then record its position in LastZero
if (search_direction == 0) {
last_zero = id_bit_number;
// check for Last discrepancy in family
if (last_zero < 9)
LastFamilyDiscrepancy = last_zero;
}
}
// set or clear the bit in the ROM byte rom_byte_number
// with mask rom_byte_mask
if (search_direction == 1)
ROM_NO[rom_byte_number] |= rom_byte_mask;
else
ROM_NO[rom_byte_number] &= ~rom_byte_mask;
// serial number search direction write bit
write_bit(search_direction);
// increment the byte counter id_bit_number
// and shift the mask rom_byte_mask
id_bit_number++;
rom_byte_mask <<= 1;
// if the mask is 0 then go to new SerialNum byte rom_byte_number and reset mask
if (rom_byte_mask == 0) {
rom_byte_number++;
rom_byte_mask = 1;
}
}
}
while(rom_byte_number < 8); // loop until through all ROM bytes 0-7
// if the search was successful then
if (!(id_bit_number < 65)) {
// search successful so set LastDiscrepancy,LastDeviceFlag,search_result
LastDiscrepancy = last_zero;
// check for last device
if (LastDiscrepancy == 0) {
LastDeviceFlag = true;
}
search_result = true;
}
}
// if no device found then reset counters so next 'search' will be like a first
if (!search_result || !ROM_NO[0]) {
LastDiscrepancy = 0;
LastDeviceFlag = false;
LastFamilyDiscrepancy = 0;
search_result = false;
} else {
for (int i = 0; i < 8; i++) newAddr[i] = ROM_NO[i];
}
return search_result;
}
#endif
#if ONEWIRE_CRC
// The 1-Wire CRC scheme is described in Maxim Application Note 27:
// "Understanding and Using Cyclic Redundancy Checks with Maxim iButton Products"
//
#if ONEWIRE_CRC8_TABLE
// Dow-CRC using polynomial X^8 + X^5 + X^4 + X^0
// Tiny 2x16 entry CRC table created by Arjen Lentz
// See http://lentz.com.au/blog/calculating-crc-with-a-tiny-32-entry-lookup-table
static const uint8_t PROGMEM dscrc2x16_table[] = {
0x00, 0x5E, 0xBC, 0xE2, 0x61, 0x3F, 0xDD, 0x83,
0xC2, 0x9C, 0x7E, 0x20, 0xA3, 0xFD, 0x1F, 0x41,
0x00, 0x9D, 0x23, 0xBE, 0x46, 0xDB, 0x65, 0xF8,
0x8C, 0x11, 0xAF, 0x32, 0xCA, 0x57, 0xE9, 0x74
};
// Compute a Dallas Semiconductor 8 bit CRC. These show up in the ROM
// and the registers. (Use tiny 2x16 entry CRC table)
uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len)
{
uint8_t crc = 0;
while (len--) {
crc = *addr++ ^ crc; // just re-using crc as intermediate
crc = pgm_read_byte(dscrc2x16_table + (crc & 0x0f)) ^
pgm_read_byte(dscrc2x16_table + 16 + ((crc >> 4) & 0x0f));
}
return crc;
}
#else
//
// Compute a Dallas Semiconductor 8 bit CRC directly.
// this is much slower, but a little smaller, than the lookup table.
//
uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len)
{
uint8_t crc = 0;
while (len--) {
#if defined(__AVR__)
crc = _crc_ibutton_update(crc, *addr++);
#else
uint8_t inbyte = *addr++;
for (uint8_t i = 8; i; i--) {
uint8_t mix = (crc ^ inbyte) & 0x01;
crc >>= 1;
if (mix) crc ^= 0x8C;
inbyte >>= 1;
}
#endif
}
return crc;
}
#endif
#if ONEWIRE_CRC16
bool OneWire::check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc)
{
crc = ~crc16(input, len, crc);
return (crc & 0xFF) == inverted_crc[0] && (crc >> 8) == inverted_crc[1];
}
uint16_t OneWire::crc16(const uint8_t* input, uint16_t len, uint16_t crc)
{
#if defined(__AVR__)
for (uint16_t i = 0 ; i < len ; i++) {
crc = _crc16_update(crc, input[i]);
}
#else
static const uint8_t oddparity[16] =
{ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 };
for (uint16_t i = 0 ; i < len ; i++) {
// Even though we're just copying a byte from the input,
// we'll be doing 16-bit computation with it.
uint16_t cdata = input[i];
cdata = (cdata ^ crc) & 0xff;
crc >>= 8;
if (oddparity[cdata & 0x0F] ^ oddparity[cdata >> 4])
crc ^= 0xC001;
cdata <<= 6;
crc ^= cdata;
cdata <<= 1;
crc ^= cdata;
}
#endif
return crc;
}
#endif
#endif

182
lib/OneWire/OneWire.h Normal file
View file

@ -0,0 +1,182 @@
#ifndef OneWire_h
#define OneWire_h
#ifdef __cplusplus
#include <stdint.h>
#if defined(__AVR__)
#include <util/crc16.h>
#endif
#if ARDUINO >= 100
#include <Arduino.h> // for delayMicroseconds, digitalPinToBitMask, etc
#else
#include "WProgram.h" // for delayMicroseconds
#include "pins_arduino.h" // for digitalPinToBitMask, etc
#endif
// You can exclude certain features from OneWire. In theory, this
// might save some space. In practice, the compiler automatically
// removes unused code (technically, the linker, using -fdata-sections
// and -ffunction-sections when compiling, and Wl,--gc-sections
// when linking), so most of these will not result in any code size
// reduction. Well, unless you try to use the missing features
// and redesign your program to not need them! ONEWIRE_CRC8_TABLE
// is the exception, because it selects a fast but large algorithm
// or a small but slow algorithm.
// you can exclude onewire_search by defining that to 0
#ifndef ONEWIRE_SEARCH
#define ONEWIRE_SEARCH 1
#endif
// You can exclude CRC checks altogether by defining this to 0
#ifndef ONEWIRE_CRC
#define ONEWIRE_CRC 1
#endif
// Select the table-lookup method of computing the 8-bit CRC
// by setting this to 1. The lookup table enlarges code size by
// about 250 bytes. It does NOT consume RAM (but did in very
// old versions of OneWire). If you disable this, a slower
// but very compact algorithm is used.
#ifndef ONEWIRE_CRC8_TABLE
#define ONEWIRE_CRC8_TABLE 1
#endif
// You can allow 16-bit CRC checks by defining this to 1
// (Note that ONEWIRE_CRC must also be 1.)
#ifndef ONEWIRE_CRC16
#define ONEWIRE_CRC16 1
#endif
// Board-specific macros for direct GPIO
#include "util/OneWire_direct_regtype.h"
class OneWire
{
private:
IO_REG_TYPE bitmask;
volatile IO_REG_TYPE *baseReg;
#if ONEWIRE_SEARCH
// global search state
unsigned char ROM_NO[8];
uint8_t LastDiscrepancy;
uint8_t LastFamilyDiscrepancy;
bool LastDeviceFlag;
#endif
public:
OneWire() { }
OneWire(uint8_t pin) { begin(pin); }
void begin(uint8_t pin);
// Perform a 1-Wire reset cycle. Returns 1 if a device responds
// with a presence pulse. Returns 0 if there is no device or the
// bus is shorted or otherwise held low for more than 250uS
uint8_t reset(void);
// Issue a 1-Wire rom select command, you do the reset first.
void select(const uint8_t rom[8]);
// Issue a 1-Wire rom skip command, to address all on bus.
void skip(void);
// Write a byte. If 'power' is one then the wire is held high at
// the end for parasitically powered devices. You are responsible
// for eventually depowering it by calling depower() or doing
// another read or write.
void write(uint8_t v, uint8_t power = 0);
void write_bytes(const uint8_t *buf, uint16_t count, bool power = 0);
// Read a byte.
uint8_t read(void);
void read_bytes(uint8_t *buf, uint16_t count);
// Write a bit. The bus is always left powered at the end, see
// note in write() about that.
void write_bit(uint8_t v);
// Read a bit.
uint8_t read_bit(void);
// Stop forcing power onto the bus. You only need to do this if
// you used the 'power' flag to write() or used a write_bit() call
// and aren't about to do another read or write. You would rather
// not leave this powered if you don't have to, just in case
// someone shorts your bus.
void depower(void);
#if ONEWIRE_SEARCH
// Clear the search state so that if will start from the beginning again.
void reset_search();
// Setup the search to find the device type 'family_code' on the next call
// to search(*newAddr) if it is present.
void target_search(uint8_t family_code);
// Look for the next device. Returns 1 if a new address has been
// returned. A zero might mean that the bus is shorted, there are
// no devices, or you have already retrieved all of them. It
// might be a good idea to check the CRC to make sure you didn't
// get garbage. The order is deterministic. You will always get
// the same devices in the same order.
bool search(uint8_t *newAddr, bool search_mode = true);
#endif
#if ONEWIRE_CRC
// Compute a Dallas Semiconductor 8 bit CRC, these are used in the
// ROM and scratchpad registers.
static uint8_t crc8(const uint8_t *addr, uint8_t len);
#if ONEWIRE_CRC16
// Compute the 1-Wire CRC16 and compare it against the received CRC.
// Example usage (reading a DS2408):
// // Put everything in a buffer so we can compute the CRC easily.
// uint8_t buf[13];
// buf[0] = 0xF0; // Read PIO Registers
// buf[1] = 0x88; // LSB address
// buf[2] = 0x00; // MSB address
// WriteBytes(net, buf, 3); // Write 3 cmd bytes
// ReadBytes(net, buf+3, 10); // Read 6 data bytes, 2 0xFF, 2 CRC16
// if (!CheckCRC16(buf, 11, &buf[11])) {
// // Handle error.
// }
//
// @param input - Array of bytes to checksum.
// @param len - How many bytes to use.
// @param inverted_crc - The two CRC16 bytes in the received data.
// This should just point into the received data,
// *not* at a 16-bit integer.
// @param crc - The crc starting value (optional)
// @return True, iff the CRC matches.
static bool check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc = 0);
// Compute a Dallas Semiconductor 16 bit CRC. This is required to check
// the integrity of data received from many 1-Wire devices. Note that the
// CRC computed here is *not* what you'll get from the 1-Wire network,
// for two reasons:
// 1) The CRC is transmitted bitwise inverted.
// 2) Depending on the endian-ness of your processor, the binary
// representation of the two-byte return value may have a different
// byte order than the two bytes you get from 1-Wire.
// @param input - Array of bytes to checksum.
// @param len - How many bytes to use.
// @param crc - The crc starting value (optional)
// @return The CRC16, as defined by Dallas Semiconductor.
static uint16_t crc16(const uint8_t* input, uint16_t len, uint16_t crc = 0);
#endif
#endif
};
// Prevent this name from leaking into Arduino sketches
#ifdef IO_REG_TYPE
#undef IO_REG_TYPE
#endif
#endif // __cplusplus
#endif // OneWire_h

View file

@ -0,0 +1,422 @@
#ifndef OneWire_Direct_GPIO_h
#define OneWire_Direct_GPIO_h
// This header should ONLY be included by OneWire.cpp. These defines are
// meant to be private, used within OneWire.cpp, but not exposed to Arduino
// sketches or other libraries which may include OneWire.h.
#include <stdint.h>
// Platform specific I/O definitions
#if defined(__AVR__)
#define PIN_TO_BASEREG(pin) (portInputRegister(digitalPinToPort(pin)))
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint8_t
#define IO_REG_BASE_ATTR asm("r30")
#define IO_REG_MASK_ATTR
#if defined(__AVR_ATmega4809__)
#define DIRECT_READ(base, mask) (((*(base)) & (mask)) ? 1 : 0)
#define DIRECT_MODE_INPUT(base, mask) ((*((base)-8)) &= ~(mask))
#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)-8)) |= (mask))
#define DIRECT_WRITE_LOW(base, mask) ((*((base)-4)) &= ~(mask))
#define DIRECT_WRITE_HIGH(base, mask) ((*((base)-4)) |= (mask))
#else
#define DIRECT_READ(base, mask) (((*((base))) & (mask)) ? 1 : 0)
#define DIRECT_MODE_INPUT(base, mask) ((*((base)-6)) = (mask))
#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)-7)) = (mask))
#define DIRECT_WRITE_LOW(base, mask) ((*((base)-2)) = (mask))
#define DIRECT_WRITE_HIGH(base, mask) ((*((base)-3)) = (mask))
#endif
#elif defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK66FX1M0__) || defined(__MK64FX512__)
#define PIN_TO_BASEREG(pin) (portOutputRegister(pin))
#define PIN_TO_BITMASK(pin) (1)
#define IO_REG_TYPE uint8_t
#define IO_REG_BASE_ATTR
#define IO_REG_MASK_ATTR __attribute__ ((unused))
#define DIRECT_READ(base, mask) (*((base)+512))
#define DIRECT_MODE_INPUT(base, mask) (*((base)+640) = 0)
#define DIRECT_MODE_OUTPUT(base, mask) (*((base)+640) = 1)
#define DIRECT_WRITE_LOW(base, mask) (*((base)+256) = 1)
#define DIRECT_WRITE_HIGH(base, mask) (*((base)+128) = 1)
#elif defined(__MKL26Z64__)
#define PIN_TO_BASEREG(pin) (portOutputRegister(pin))
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint8_t
#define IO_REG_BASE_ATTR
#define IO_REG_MASK_ATTR
#define DIRECT_READ(base, mask) ((*((base)+16) & (mask)) ? 1 : 0)
#define DIRECT_MODE_INPUT(base, mask) (*((base)+20) &= ~(mask))
#define DIRECT_MODE_OUTPUT(base, mask) (*((base)+20) |= (mask))
#define DIRECT_WRITE_LOW(base, mask) (*((base)+8) = (mask))
#define DIRECT_WRITE_HIGH(base, mask) (*((base)+4) = (mask))
#elif defined(__IMXRT1052__) || defined(__IMXRT1062__)
#define PIN_TO_BASEREG(pin) (portOutputRegister(pin))
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint32_t
#define IO_REG_BASE_ATTR
#define IO_REG_MASK_ATTR
#define DIRECT_READ(base, mask) ((*((base)+2) & (mask)) ? 1 : 0)
#define DIRECT_MODE_INPUT(base, mask) (*((base)+1) &= ~(mask))
#define DIRECT_MODE_OUTPUT(base, mask) (*((base)+1) |= (mask))
#define DIRECT_WRITE_LOW(base, mask) (*((base)+34) = (mask))
#define DIRECT_WRITE_HIGH(base, mask) (*((base)+33) = (mask))
#elif defined(__SAM3X8E__) || defined(__SAM3A8C__) || defined(__SAM3A4C__)
// Arduino 1.5.1 may have a bug in delayMicroseconds() on Arduino Due.
// http://arduino.cc/forum/index.php/topic,141030.msg1076268.html#msg1076268
// If you have trouble with OneWire on Arduino Due, please check the
// status of delayMicroseconds() before reporting a bug in OneWire!
#define PIN_TO_BASEREG(pin) (&(digitalPinToPort(pin)->PIO_PER))
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint32_t
#define IO_REG_BASE_ATTR
#define IO_REG_MASK_ATTR
#define DIRECT_READ(base, mask) (((*((base)+15)) & (mask)) ? 1 : 0)
#define DIRECT_MODE_INPUT(base, mask) ((*((base)+5)) = (mask))
#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)+4)) = (mask))
#define DIRECT_WRITE_LOW(base, mask) ((*((base)+13)) = (mask))
#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+12)) = (mask))
#ifndef PROGMEM
#define PROGMEM
#endif
#ifndef pgm_read_byte
#define pgm_read_byte(addr) (*(const uint8_t *)(addr))
#endif
#elif defined(__PIC32MX__)
#define PIN_TO_BASEREG(pin) (portModeRegister(digitalPinToPort(pin)))
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint32_t
#define IO_REG_BASE_ATTR
#define IO_REG_MASK_ATTR
#define DIRECT_READ(base, mask) (((*(base+4)) & (mask)) ? 1 : 0) //PORTX + 0x10
#define DIRECT_MODE_INPUT(base, mask) ((*(base+2)) = (mask)) //TRISXSET + 0x08
#define DIRECT_MODE_OUTPUT(base, mask) ((*(base+1)) = (mask)) //TRISXCLR + 0x04
#define DIRECT_WRITE_LOW(base, mask) ((*(base+8+1)) = (mask)) //LATXCLR + 0x24
#define DIRECT_WRITE_HIGH(base, mask) ((*(base+8+2)) = (mask)) //LATXSET + 0x28
#elif defined(ARDUINO_ARCH_ESP8266)
// Special note: I depend on the ESP community to maintain these definitions and
// submit good pull requests. I can not answer any ESP questions or help you
// resolve any problems related to ESP chips. Please do not contact me and please
// DO NOT CREATE GITHUB ISSUES for ESP support. All ESP questions must be asked
// on ESP community forums.
#define PIN_TO_BASEREG(pin) ((volatile uint32_t*) GPO)
#define PIN_TO_BITMASK(pin) (1 << pin)
#define IO_REG_TYPE uint32_t
#define IO_REG_BASE_ATTR
#define IO_REG_MASK_ATTR
#define DIRECT_READ(base, mask) ((GPI & (mask)) ? 1 : 0) //GPIO_IN_ADDRESS
#define DIRECT_MODE_INPUT(base, mask) (GPE &= ~(mask)) //GPIO_ENABLE_W1TC_ADDRESS
#define DIRECT_MODE_OUTPUT(base, mask) (GPE |= (mask)) //GPIO_ENABLE_W1TS_ADDRESS
#define DIRECT_WRITE_LOW(base, mask) (GPOC = (mask)) //GPIO_OUT_W1TC_ADDRESS
#define DIRECT_WRITE_HIGH(base, mask) (GPOS = (mask)) //GPIO_OUT_W1TS_ADDRESS
#elif defined(ARDUINO_ARCH_ESP32)
#include <driver/rtc_io.h>
#define PIN_TO_BASEREG(pin) (0)
#define PIN_TO_BITMASK(pin) (pin)
#define IO_REG_TYPE uint32_t
#define IO_REG_BASE_ATTR
#define IO_REG_MASK_ATTR
static inline __attribute__((always_inline))
IO_REG_TYPE directRead(IO_REG_TYPE pin)
{
if ( pin < 32 )
return (GPIO.in >> pin) & 0x1;
else if ( pin < 40 )
return (GPIO.in1.val >> (pin - 32)) & 0x1;
return 0;
}
static inline __attribute__((always_inline))
void directWriteLow(IO_REG_TYPE pin)
{
if ( pin < 32 )
GPIO.out_w1tc = ((uint32_t)1 << pin);
else if ( pin < 34 )
GPIO.out1_w1tc.val = ((uint32_t)1 << (pin - 32));
}
static inline __attribute__((always_inline))
void directWriteHigh(IO_REG_TYPE pin)
{
if ( pin < 32 )
GPIO.out_w1ts = ((uint32_t)1 << pin);
else if ( pin < 34 )
GPIO.out1_w1ts.val = ((uint32_t)1 << (pin - 32));
}
static inline __attribute__((always_inline))
void directModeInput(IO_REG_TYPE pin)
{
if ( digitalPinIsValid(pin) )
{
uint32_t rtc_reg(rtc_gpio_desc[pin].reg);
if ( rtc_reg ) // RTC pins PULL settings
{
ESP_REG(rtc_reg) = ESP_REG(rtc_reg) & ~(rtc_gpio_desc[pin].mux);
ESP_REG(rtc_reg) = ESP_REG(rtc_reg) & ~(rtc_gpio_desc[pin].pullup | rtc_gpio_desc[pin].pulldown);
}
if ( pin < 32 )
GPIO.enable_w1tc = ((uint32_t)1 << pin);
else
GPIO.enable1_w1tc.val = ((uint32_t)1 << (pin - 32));
uint32_t pinFunction((uint32_t)2 << FUN_DRV_S); // what are the drivers?
pinFunction |= FUN_IE; // input enable but required for output as well?
pinFunction |= ((uint32_t)2 << MCU_SEL_S);
ESP_REG(DR_REG_IO_MUX_BASE + esp32_gpioMux[pin].reg) = pinFunction;
GPIO.pin[pin].val = 0;
}
}
static inline __attribute__((always_inline))
void directModeOutput(IO_REG_TYPE pin)
{
if ( digitalPinIsValid(pin) && pin <= 33 ) // pins above 33 can be only inputs
{
uint32_t rtc_reg(rtc_gpio_desc[pin].reg);
if ( rtc_reg ) // RTC pins PULL settings
{
ESP_REG(rtc_reg) = ESP_REG(rtc_reg) & ~(rtc_gpio_desc[pin].mux);
ESP_REG(rtc_reg) = ESP_REG(rtc_reg) & ~(rtc_gpio_desc[pin].pullup | rtc_gpio_desc[pin].pulldown);
}
if ( pin < 32 )
GPIO.enable_w1ts = ((uint32_t)1 << pin);
else // already validated to pins <= 33
GPIO.enable1_w1ts.val = ((uint32_t)1 << (pin - 32));
uint32_t pinFunction((uint32_t)2 << FUN_DRV_S); // what are the drivers?
pinFunction |= FUN_IE; // input enable but required for output as well?
pinFunction |= ((uint32_t)2 << MCU_SEL_S);
ESP_REG(DR_REG_IO_MUX_BASE + esp32_gpioMux[pin].reg) = pinFunction;
GPIO.pin[pin].val = 0;
}
}
#define DIRECT_READ(base, pin) directRead(pin)
#define DIRECT_WRITE_LOW(base, pin) directWriteLow(pin)
#define DIRECT_WRITE_HIGH(base, pin) directWriteHigh(pin)
#define DIRECT_MODE_INPUT(base, pin) directModeInput(pin)
#define DIRECT_MODE_OUTPUT(base, pin) directModeOutput(pin)
// https://github.com/PaulStoffregen/OneWire/pull/47
// https://github.com/stickbreaker/OneWire/commit/6eb7fc1c11a15b6ac8c60e5671cf36eb6829f82c
#ifdef interrupts
#undef interrupts
#endif
#ifdef noInterrupts
#undef noInterrupts
#endif
#define noInterrupts() {portMUX_TYPE mux = portMUX_INITIALIZER_UNLOCKED;portENTER_CRITICAL(&mux)
#define interrupts() portEXIT_CRITICAL(&mux);}
//#warning "ESP32 OneWire testing"
#elif defined(ARDUINO_ARCH_STM32)
#define PIN_TO_BASEREG(pin) (0)
#define PIN_TO_BITMASK(pin) ((uint32_t)digitalPinToPinName(pin))
#define IO_REG_TYPE uint32_t
#define IO_REG_BASE_ATTR
#define IO_REG_MASK_ATTR
#define DIRECT_READ(base, pin) digitalReadFast((PinName)pin)
#define DIRECT_WRITE_LOW(base, pin) digitalWriteFast((PinName)pin, LOW)
#define DIRECT_WRITE_HIGH(base, pin) digitalWriteFast((PinName)pin, HIGH)
#define DIRECT_MODE_INPUT(base, pin) pin_function((PinName)pin, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0))
#define DIRECT_MODE_OUTPUT(base, pin) pin_function((PinName)pin, STM_PIN_DATA(STM_MODE_OUTPUT_PP, GPIO_NOPULL, 0))
#elif defined(__SAMD21G18A__)
#define PIN_TO_BASEREG(pin) portModeRegister(digitalPinToPort(pin))
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint32_t
#define IO_REG_BASE_ATTR
#define IO_REG_MASK_ATTR
#define DIRECT_READ(base, mask) (((*((base)+8)) & (mask)) ? 1 : 0)
#define DIRECT_MODE_INPUT(base, mask) ((*((base)+1)) = (mask))
#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)+2)) = (mask))
#define DIRECT_WRITE_LOW(base, mask) ((*((base)+5)) = (mask))
#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+6)) = (mask))
#elif defined(RBL_NRF51822)
#define PIN_TO_BASEREG(pin) (0)
#define PIN_TO_BITMASK(pin) (pin)
#define IO_REG_TYPE uint32_t
#define IO_REG_BASE_ATTR
#define IO_REG_MASK_ATTR
#define DIRECT_READ(base, pin) nrf_gpio_pin_read(pin)
#define DIRECT_WRITE_LOW(base, pin) nrf_gpio_pin_clear(pin)
#define DIRECT_WRITE_HIGH(base, pin) nrf_gpio_pin_set(pin)
#define DIRECT_MODE_INPUT(base, pin) nrf_gpio_cfg_input(pin, NRF_GPIO_PIN_NOPULL)
#define DIRECT_MODE_OUTPUT(base, pin) nrf_gpio_cfg_output(pin)
#elif defined(__arc__) /* Arduino101/Genuino101 specifics */
#include "scss_registers.h"
#include "portable.h"
#include "avr/pgmspace.h"
#define GPIO_ID(pin) (g_APinDescription[pin].ulGPIOId)
#define GPIO_TYPE(pin) (g_APinDescription[pin].ulGPIOType)
#define GPIO_BASE(pin) (g_APinDescription[pin].ulGPIOBase)
#define DIR_OFFSET_SS 0x01
#define DIR_OFFSET_SOC 0x04
#define EXT_PORT_OFFSET_SS 0x0A
#define EXT_PORT_OFFSET_SOC 0x50
/* GPIO registers base address */
#define PIN_TO_BASEREG(pin) ((volatile uint32_t *)g_APinDescription[pin].ulGPIOBase)
#define PIN_TO_BITMASK(pin) pin
#define IO_REG_TYPE uint32_t
#define IO_REG_BASE_ATTR
#define IO_REG_MASK_ATTR
static inline __attribute__((always_inline))
IO_REG_TYPE directRead(volatile IO_REG_TYPE *base, IO_REG_TYPE pin)
{
IO_REG_TYPE ret;
if (SS_GPIO == GPIO_TYPE(pin)) {
ret = READ_ARC_REG(((IO_REG_TYPE)base + EXT_PORT_OFFSET_SS));
} else {
ret = MMIO_REG_VAL_FROM_BASE((IO_REG_TYPE)base, EXT_PORT_OFFSET_SOC);
}
return ((ret >> GPIO_ID(pin)) & 0x01);
}
static inline __attribute__((always_inline))
void directModeInput(volatile IO_REG_TYPE *base, IO_REG_TYPE pin)
{
if (SS_GPIO == GPIO_TYPE(pin)) {
WRITE_ARC_REG(READ_ARC_REG((((IO_REG_TYPE)base) + DIR_OFFSET_SS)) & ~(0x01 << GPIO_ID(pin)),
((IO_REG_TYPE)(base) + DIR_OFFSET_SS));
} else {
MMIO_REG_VAL_FROM_BASE((IO_REG_TYPE)base, DIR_OFFSET_SOC) &= ~(0x01 << GPIO_ID(pin));
}
}
static inline __attribute__((always_inline))
void directModeOutput(volatile IO_REG_TYPE *base, IO_REG_TYPE pin)
{
if (SS_GPIO == GPIO_TYPE(pin)) {
WRITE_ARC_REG(READ_ARC_REG(((IO_REG_TYPE)(base) + DIR_OFFSET_SS)) | (0x01 << GPIO_ID(pin)),
((IO_REG_TYPE)(base) + DIR_OFFSET_SS));
} else {
MMIO_REG_VAL_FROM_BASE((IO_REG_TYPE)base, DIR_OFFSET_SOC) |= (0x01 << GPIO_ID(pin));
}
}
static inline __attribute__((always_inline))
void directWriteLow(volatile IO_REG_TYPE *base, IO_REG_TYPE pin)
{
if (SS_GPIO == GPIO_TYPE(pin)) {
WRITE_ARC_REG(READ_ARC_REG(base) & ~(0x01 << GPIO_ID(pin)), base);
} else {
MMIO_REG_VAL(base) &= ~(0x01 << GPIO_ID(pin));
}
}
static inline __attribute__((always_inline))
void directWriteHigh(volatile IO_REG_TYPE *base, IO_REG_TYPE pin)
{
if (SS_GPIO == GPIO_TYPE(pin)) {
WRITE_ARC_REG(READ_ARC_REG(base) | (0x01 << GPIO_ID(pin)), base);
} else {
MMIO_REG_VAL(base) |= (0x01 << GPIO_ID(pin));
}
}
#define DIRECT_READ(base, pin) directRead(base, pin)
#define DIRECT_MODE_INPUT(base, pin) directModeInput(base, pin)
#define DIRECT_MODE_OUTPUT(base, pin) directModeOutput(base, pin)
#define DIRECT_WRITE_LOW(base, pin) directWriteLow(base, pin)
#define DIRECT_WRITE_HIGH(base, pin) directWriteHigh(base, pin)
#elif defined(__riscv)
/*
* Tested on highfive1
*
* Stable results are achieved operating in the
* two high speed modes of the highfive1. It
* seems to be less reliable in slow mode.
*/
#define PIN_TO_BASEREG(pin) (0)
#define PIN_TO_BITMASK(pin) digitalPinToBitMask(pin)
#define IO_REG_TYPE uint32_t
#define IO_REG_BASE_ATTR
#define IO_REG_MASK_ATTR
static inline __attribute__((always_inline))
IO_REG_TYPE directRead(IO_REG_TYPE mask)
{
return ((GPIO_REG(GPIO_INPUT_VAL) & mask) != 0) ? 1 : 0;
}
static inline __attribute__((always_inline))
void directModeInput(IO_REG_TYPE mask)
{
GPIO_REG(GPIO_OUTPUT_XOR) &= ~mask;
GPIO_REG(GPIO_IOF_EN) &= ~mask;
GPIO_REG(GPIO_INPUT_EN) |= mask;
GPIO_REG(GPIO_OUTPUT_EN) &= ~mask;
}
static inline __attribute__((always_inline))
void directModeOutput(IO_REG_TYPE mask)
{
GPIO_REG(GPIO_OUTPUT_XOR) &= ~mask;
GPIO_REG(GPIO_IOF_EN) &= ~mask;
GPIO_REG(GPIO_INPUT_EN) &= ~mask;
GPIO_REG(GPIO_OUTPUT_EN) |= mask;
}
static inline __attribute__((always_inline))
void directWriteLow(IO_REG_TYPE mask)
{
GPIO_REG(GPIO_OUTPUT_VAL) &= ~mask;
}
static inline __attribute__((always_inline))
void directWriteHigh(IO_REG_TYPE mask)
{
GPIO_REG(GPIO_OUTPUT_VAL) |= mask;
}
#define DIRECT_READ(base, mask) directRead(mask)
#define DIRECT_WRITE_LOW(base, mask) directWriteLow(mask)
#define DIRECT_WRITE_HIGH(base, mask) directWriteHigh(mask)
#define DIRECT_MODE_INPUT(base, mask) directModeInput(mask)
#define DIRECT_MODE_OUTPUT(base, mask) directModeOutput(mask)
#else
#define PIN_TO_BASEREG(pin) (0)
#define PIN_TO_BITMASK(pin) (pin)
#define IO_REG_TYPE unsigned int
#define IO_REG_BASE_ATTR
#define IO_REG_MASK_ATTR
#define DIRECT_READ(base, pin) digitalRead(pin)
#define DIRECT_WRITE_LOW(base, pin) digitalWrite(pin, LOW)
#define DIRECT_WRITE_HIGH(base, pin) digitalWrite(pin, HIGH)
#define DIRECT_MODE_INPUT(base, pin) pinMode(pin,INPUT)
#define DIRECT_MODE_OUTPUT(base, pin) pinMode(pin,OUTPUT)
#warning "OneWire. Fallback mode. Using API calls for pinMode,digitalRead and digitalWrite. Operation of this library is not guaranteed on this architecture."
#endif
#endif

View file

@ -0,0 +1,52 @@
#ifndef OneWire_Direct_RegType_h
#define OneWire_Direct_RegType_h
#include <stdint.h>
// Platform specific I/O register type
#if defined(__AVR__)
#define IO_REG_TYPE uint8_t
#elif defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MK66FX1M0__) || defined(__MK64FX512__)
#define IO_REG_TYPE uint8_t
#elif defined(__IMXRT1052__) || defined(__IMXRT1062__)
#define IO_REG_TYPE uint32_t
#elif defined(__MKL26Z64__)
#define IO_REG_TYPE uint8_t
#elif defined(__SAM3X8E__) || defined(__SAM3A8C__) || defined(__SAM3A4C__)
#define IO_REG_TYPE uint32_t
#elif defined(__PIC32MX__)
#define IO_REG_TYPE uint32_t
#elif defined(ARDUINO_ARCH_ESP8266)
#define IO_REG_TYPE uint32_t
#elif defined(ARDUINO_ARCH_ESP32)
#define IO_REG_TYPE uint32_t
#define IO_REG_MASK_ATTR
#elif defined(ARDUINO_ARCH_STM32)
#define IO_REG_TYPE uint32_t
#elif defined(__SAMD21G18A__)
#define IO_REG_TYPE uint32_t
#elif defined(RBL_NRF51822)
#define IO_REG_TYPE uint32_t
#elif defined(__arc__) /* Arduino101/Genuino101 specifics */
#define IO_REG_TYPE uint32_t
#elif defined(__riscv)
#define IO_REG_TYPE uint32_t
#else
#define IO_REG_TYPE unsigned int
#endif
#endif

View file

@ -56,6 +56,16 @@
// #define HAS_SENSAIRS8
// #define HAS_BME280
// #define HAS_SHT21
// #define HAS_DS18B20
/**************************************************************************************************************************
* Sensor Configuration
* Change according to your Needs
*************************************************************************************************************************/
// Pin for the OneWire Bus
#define DS18B20_PIN PIN_PC3
// A/D Resolution of the DS18B20 (9-12 Bit)
#define DS18B20_RES 12
/**************************************************************************************************************************
* How many minutes to sleep between Measuring/Sending

View file

@ -33,6 +33,9 @@
#ifdef HAS_SHT21
#include <SHT21.h>
#endif
#ifdef HAS_DS18B20
#include <DS18B20.h>
#endif
#endif
// Define the blink function and BLINK_LED Macro depending
@ -257,6 +260,8 @@ void setup()
// Initialize Serial if Debug is enabled
#ifdef DEBUG
Serial.begin(115200);
// Wait 2 seconds for Monitor to connect
delay(2000);
#endif
// Initialize SPI and I2C
@ -282,38 +287,39 @@ void setup()
// Setup all Sensors and Calculate the Payload Length
// Order of the Sensors here is Order in the Payload
#ifndef HAS_NO_SENSOR
uint8_t i = 0;
#ifdef HAS_MHZ19C
sensors[i] = new MHZ19C();
payloadBytes += sensors[i]->numBytes();
i++;
#endif
#ifdef HAS_SG112A
sensors[i] = new SG112A();
payloadBytes += sensors[i]->numBytes();
i++;
#endif
#ifdef HAS_SENSAIRS8
sensors[i] = new SENSAIRS8();
payloadBytes += sensors[i]->numBytes();
i++;
#endif
#ifdef HAS_BME280
#ifdef HAS_BME280
sensors[i] = new BME280();
payloadBytes += sensors[i]->numBytes();
i++;
#endif
#ifdef HAS_SHT21
sensors[i] = new SHT21();
payloadBytes += sensors[i]->numBytes();
sensors[i] = new SHT21()
i++;
#endif
#endif // HAS_NO_SENSOR
#ifdef HAS_DS18B20
sensors[i] = new DS18B20(DS18B20_PIN, DS18B20_RES);
i++;
#endif
// Initialize all Sensors
#ifndef HAS_NO_SENSOR
for (i = 0; i < NUM_SENSORS; i++)
for (i = 0; i < NUM_SENSORS; i++) {
sensors[i]->initialize();
payloadBytes += sensors[i]->numBytes();
}
#endif
// Setup RTC