328 lines
14 KiB
C
328 lines
14 KiB
C
|
/*--------------------------------------------------------------------
|
||
|
This file is part of the tinyNeoPixel library, derived from
|
||
|
Adafruit_NeoPixel.
|
||
|
|
||
|
NeoPixel is free software: you can redistribute it and/or modify
|
||
|
it under the terms of the GNU Lesser General Public License as
|
||
|
published by the Free Software Foundation, either version 3 of
|
||
|
the License, or (at your option) any later version.
|
||
|
|
||
|
NeoPixel is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU Lesser General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU Lesser General Public
|
||
|
License along with NeoPixel. If not, see
|
||
|
<http://www.gnu.org/licenses/>.
|
||
|
--------------------------------------------------------------------*/
|
||
|
// *INDENT-OFF* astyle hates this file
|
||
|
// *PAD-OFF* and destroys the lookup tables!
|
||
|
|
||
|
#ifndef TINYNEOPIXEL_H
|
||
|
#define TINYNEOPIXEL_H
|
||
|
|
||
|
#include <Arduino.h>
|
||
|
|
||
|
#if (__AVR_ARCH__ < 100)
|
||
|
#error "This version of the library only supports AVRxt parts (tinyAVR 0/1/2-series, megaAVR 0-series and the AVR DA/DB/DD parts. For tinyNeoPixel, for classic AVR, get from ATTinyCore package"
|
||
|
#endif
|
||
|
|
||
|
// The order of primary colors in the NeoPixel data stream can vary
|
||
|
// among device types, manufacturers and even different revisions of
|
||
|
// the same item. The third parameter to the Adafruit_NeoPixel
|
||
|
// constructor encodes the per-pixel byte offsets of the red, green
|
||
|
// and blue primaries (plus white, if present) in the data stream --
|
||
|
// the following #defines provide an easier-to-use named version for
|
||
|
// each permutation. e.g. NEO_GRB indicates a NeoPixel-compatible
|
||
|
// device expecting three bytes per pixel, with the first byte
|
||
|
// containing the green value, second containing red and third
|
||
|
// containing blue. The in-memory representation of a chain of
|
||
|
// NeoPixels is the same as the data-stream order; no re-ordering of
|
||
|
// bytes is required when issuing data to the chain.
|
||
|
|
||
|
// Bits 5,4 of this value are the offset (0-3) from the first byte of
|
||
|
// a pixel to the location of the red color byte. Bits 3,2 are the
|
||
|
// green offset and 1,0 are the blue offset. If it is an RGBW-type
|
||
|
// device (supporting a white primary in addition to R,G,B), bits 7,6
|
||
|
// are the offset to the white byte...otherwise, bits 7,6 are set to
|
||
|
// the same value as 5,4 (red) to indicate an RGB (not RGBW) device.
|
||
|
// i.e. binary representation:
|
||
|
// 0bWWRRGGBB for RGBW devices
|
||
|
// 0bRRRRGGBB for RGB
|
||
|
|
||
|
// RGB NeoPixel permutations; white and red offsets are always same
|
||
|
// Offset: W R G B
|
||
|
#define NEO_RGB ((0 << 6) | (0 << 4) | (1 << 2) | (2))
|
||
|
#define NEO_RBG ((0 << 6) | (0 << 4) | (2 << 2) | (1))
|
||
|
#define NEO_GRB ((1 << 6) | (1 << 4) | (0 << 2) | (2))
|
||
|
#define NEO_GBR ((2 << 6) | (2 << 4) | (0 << 2) | (1))
|
||
|
#define NEO_BRG ((1 << 6) | (1 << 4) | (2 << 2) | (0))
|
||
|
#define NEO_BGR ((2 << 6) | (2 << 4) | (1 << 2) | (0))
|
||
|
|
||
|
// RGBW NeoPixel permutations; all 4 offsets are distinct
|
||
|
// Offset: W R G B
|
||
|
#define NEO_WRGB ((0 << 6) | (1 << 4) | (2 << 2) | (3))
|
||
|
#define NEO_WRBG ((0 << 6) | (1 << 4) | (3 << 2) | (2))
|
||
|
#define NEO_WGRB ((0 << 6) | (2 << 4) | (1 << 2) | (3))
|
||
|
#define NEO_WGBR ((0 << 6) | (3 << 4) | (1 << 2) | (2))
|
||
|
#define NEO_WBRG ((0 << 6) | (2 << 4) | (3 << 2) | (1))
|
||
|
#define NEO_WBGR ((0 << 6) | (3 << 4) | (2 << 2) | (1))
|
||
|
|
||
|
#define NEO_RWGB ((1 << 6) | (0 << 4) | (2 << 2) | (3))
|
||
|
#define NEO_RWBG ((1 << 6) | (0 << 4) | (3 << 2) | (2))
|
||
|
#define NEO_RGWB ((2 << 6) | (0 << 4) | (1 << 2) | (3))
|
||
|
#define NEO_RGBW ((3 << 6) | (0 << 4) | (1 << 2) | (2))
|
||
|
#define NEO_RBWG ((2 << 6) | (0 << 4) | (3 << 2) | (1))
|
||
|
#define NEO_RBGW ((3 << 6) | (0 << 4) | (2 << 2) | (1))
|
||
|
|
||
|
#define NEO_GWRB ((1 << 6) | (2 << 4) | (0 << 2) | (3))
|
||
|
#define NEO_GWBR ((1 << 6) | (3 << 4) | (0 << 2) | (2))
|
||
|
#define NEO_GRWB ((2 << 6) | (1 << 4) | (0 << 2) | (3))
|
||
|
#define NEO_GRBW ((3 << 6) | (1 << 4) | (0 << 2) | (2))
|
||
|
#define NEO_GBWR ((2 << 6) | (3 << 4) | (0 << 2) | (1))
|
||
|
#define NEO_GBRW ((3 << 6) | (2 << 4) | (0 << 2) | (1))
|
||
|
|
||
|
#define NEO_BWRG ((1 << 6) | (2 << 4) | (3 << 2) | (0))
|
||
|
#define NEO_BWGR ((1 << 6) | (3 << 4) | (2 << 2) | (0))
|
||
|
#define NEO_BRWG ((2 << 6) | (1 << 4) | (3 << 2) | (0))
|
||
|
#define NEO_BRGW ((3 << 6) | (1 << 4) | (2 << 2) | (0))
|
||
|
#define NEO_BGWR ((2 << 6) | (3 << 4) | (1 << 2) | (0))
|
||
|
#define NEO_BGRW ((3 << 6) | (2 << 4) | (1 << 2) | (0))
|
||
|
|
||
|
#define NEO_KHZ800 0x0000 ///< 800 KHz data transmission
|
||
|
|
||
|
// 400 kHz neopixels are virtually absent from the market today
|
||
|
// They are not supported.
|
||
|
|
||
|
// These two tables are declared outside the Adafruit_NeoPixel class
|
||
|
// because some boards may require oldschool compilers that don't
|
||
|
// handle the C++11 constexpr keyword.
|
||
|
|
||
|
/* A pre-calculated 8-bit sine look-up table stored in flash for use
|
||
|
with the sine8() function. This is apparently of use in some animation
|
||
|
algorithms. If __AVR_ARCH__==103, then all of the flash is memory
|
||
|
mapped, and we can simply declare it const, access it like a
|
||
|
normal variable, and it won't be copied to RAM.
|
||
|
|
||
|
AVRxt devices with too much flash for all of it to be mapped
|
||
|
which includes the AVR64Dx and AVR128Dx parts. DxCore defines a
|
||
|
.section for the area of PROGMEM that is mapped by default, and
|
||
|
a MAPPED_PROGMEM macro. A variable declared const MAPPED_PROGMEM can
|
||
|
be accessed normally, but will be stored in the flash and not copied to RAM.
|
||
|
|
||
|
Finally, if neither of those are an option - it gets declared with PROGMEM
|
||
|
|
||
|
|
||
|
Copy & paste this snippet into a Python REPL to regenerate:
|
||
|
import math
|
||
|
for x in range(256):
|
||
|
print("{:3},".format(int((math.sin(x/128.0*math.pi)+1.0)*127.5+0.5))),
|
||
|
if x&15 == 15: print
|
||
|
*/
|
||
|
#if (__AVR_ARCH__==103)
|
||
|
// All out flash is mapped - yay!
|
||
|
static const uint8_t _NeoPixelSineTable[256] = {
|
||
|
#elif defined(MAPPED_PROGMEM)
|
||
|
// Some of it is - but we can put stuff there - yay!
|
||
|
static const uint8_t MAPPED_PROGMEM _NeoPixelSineTable[256] = {
|
||
|
#else
|
||
|
// Back to progmem...
|
||
|
static const uint8_t PROGMEM _NeoPixelSineTable[256] = {
|
||
|
#endif
|
||
|
128,131,134,137,140,143,146,149,152,155,158,162,165,167,170,173,
|
||
|
176,179,182,185,188,190,193,196,198,201,203,206,208,211,213,215,
|
||
|
218,220,222,224,226,228,230,232,234,235,237,238,240,241,243,244,
|
||
|
245,246,248,249,250,250,251,252,253,253,254,254,254,255,255,255,
|
||
|
255,255,255,255,254,254,254,253,253,252,251,250,250,249,248,246,
|
||
|
245,244,243,241,240,238,237,235,234,232,230,228,226,224,222,220,
|
||
|
218,215,213,211,208,206,203,201,198,196,193,190,188,185,182,179,
|
||
|
176,173,170,167,165,162,158,155,152,149,146,143,140,137,134,131,
|
||
|
128,124,121,118,115,112,109,106,103,100, 97, 93, 90, 88, 85, 82,
|
||
|
79, 76, 73, 70, 67, 65, 62, 59, 57, 54, 52, 49, 47, 44, 42, 40,
|
||
|
37, 35, 33, 31, 29, 27, 25, 23, 21, 20, 18, 17, 15, 14, 12, 11,
|
||
|
10, 9, 7, 6, 5, 5, 4, 3, 2, 2, 1, 1, 1, 0, 0, 0,
|
||
|
0, 0, 0, 0, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 9,
|
||
|
10, 11, 12, 14, 15, 17, 18, 20, 21, 23, 25, 27, 29, 31, 33, 35,
|
||
|
37, 40, 42, 44, 47, 49, 52, 54, 57, 59, 62, 65, 67, 70, 73, 76,
|
||
|
79, 82, 85, 88, 90, 93, 97,100,103,106,109,112,115,118,121,124};
|
||
|
|
||
|
/* Similar to above, but for an 8-bit gamma-correction table.
|
||
|
Copy & paste this snippet into a Python REPL to regenerate:
|
||
|
import math
|
||
|
gamma=2.6
|
||
|
for x in range(256):
|
||
|
print("{:3},".format(int(math.pow((x)/255.0,gamma)*255.0+0.5))),
|
||
|
if x&15 == 15: print
|
||
|
*/
|
||
|
#if (__AVR_ARCH__==103)
|
||
|
// All our flash is mapped - yay!
|
||
|
static const uint8_t _NeoPixelGammaTable[256] = {
|
||
|
#elif defined(MAPPED_PROGMEM)
|
||
|
// Some of it is - but we can put stuff there - yay!
|
||
|
static const uint8_t MAPPED_PROGMEM _NeoPixelGammaTable[256] = {
|
||
|
#else
|
||
|
// Back to progmem...
|
||
|
static const uint8_t PROGMEM _NeoPixelGammaTable[256] = {
|
||
|
#endif
|
||
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
|
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
|
||
|
1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3,
|
||
|
3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7,
|
||
|
7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12,
|
||
|
13, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20,
|
||
|
20, 21, 21, 22, 22, 23, 24, 24, 25, 25, 26, 27, 27, 28, 29, 29,
|
||
|
30, 31, 31, 32, 33, 34, 34, 35, 36, 37, 38, 38, 39, 40, 41, 42,
|
||
|
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
|
||
|
58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 75,
|
||
|
76, 77, 78, 80, 81, 82, 84, 85, 86, 88, 89, 90, 92, 93, 94, 96,
|
||
|
97, 99,100,102,103,105,106,108,109,111,112,114,115,117,119,120,
|
||
|
122,124,125,127,129,130,132,134,136,137,139,141,143,145,146,148,
|
||
|
150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,
|
||
|
182,184,186,188,191,193,195,197,199,202,204,206,209,211,213,215,
|
||
|
218,220,223,225,227,230,232,235,237,240,242,245,247,250,252,255};
|
||
|
|
||
|
|
||
|
typedef uint8_t neoPixelType;
|
||
|
|
||
|
class tinyNeoPixel {
|
||
|
|
||
|
public:
|
||
|
|
||
|
// Constructor: number of LEDs, pin number, LED type
|
||
|
tinyNeoPixel(uint16_t n, uint8_t p, neoPixelType t, uint8_t *pxl);
|
||
|
~tinyNeoPixel();
|
||
|
|
||
|
void
|
||
|
show(void),
|
||
|
setPin(uint8_t p),
|
||
|
setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b),
|
||
|
setPixelColor(uint16_t n, uint8_t r, uint8_t g, uint8_t b, uint8_t w),
|
||
|
setPixelColor(uint16_t n, uint32_t c),
|
||
|
fill(uint32_t c=0, uint16_t first=0, uint16_t count=0),
|
||
|
setBrightness(uint8_t b),
|
||
|
clear();
|
||
|
uint8_t
|
||
|
*getPixels(void) const,
|
||
|
getBrightness(void) const;
|
||
|
uint16_t
|
||
|
numPixels(void) const;
|
||
|
uint32_t
|
||
|
getPixelColor(uint16_t n) const;
|
||
|
uint8_t getPin(void) { return pin; }
|
||
|
void begin(void) {return;}
|
||
|
/*!
|
||
|
@brief An 8-bit integer sine wave function, not directly compatible
|
||
|
with standard trigonometric units like radians or degrees.
|
||
|
@param x Input angle, 0-255; 256 would loop back to zero, completing
|
||
|
the circle (equivalent to 360 degrees or 2 pi radians).
|
||
|
One can therefore use an unsigned 8-bit variable and simply
|
||
|
add or subtract, allowing it to overflow/underflow and it
|
||
|
still does the expected contiguous thing.
|
||
|
@return Sine result, 0 to 255, or -128 to +127 if type-converted to
|
||
|
a signed int8_t, but you'll most likely want unsigned as this
|
||
|
output is often used for pixel brightness in animation effects.
|
||
|
*/
|
||
|
static uint8_t sine8(uint8_t x) { // 0-255 in, 0-255 out
|
||
|
#if (__AVR_ARCH__==103 || defined(MAPPED_PROGMEM))
|
||
|
return _NeoPixelSineTable[x];
|
||
|
#else // We had to put it in PROGMEM, and that's how we get it out
|
||
|
return pgm_read_byte(&_NeoPixelSineTable[x]); // 0-255 in, 0-255 out
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
@brief An 8-bit gamma-correction function for basic pixel brightness
|
||
|
adjustment. Makes color transitions appear more perceptially
|
||
|
correct.
|
||
|
@param x Input brightness, 0 (minimum or off/black) to 255 (maximum).
|
||
|
@return Gamma-adjusted brightness, can then be passed to one of the
|
||
|
setPixelColor() functions. This uses a fixed gamma correction
|
||
|
exponent of 2.6, which seems reasonably okay for average
|
||
|
NeoPixels in average tasks. If you need finer control you'll
|
||
|
need to provide your own gamma-correction function instead.
|
||
|
*/
|
||
|
|
||
|
static uint8_t gamma8(uint8_t x) {
|
||
|
#if (__AVR_ARCH__==103 || defined(MAPPED_PROGMEM))
|
||
|
return _NeoPixelGammaTable[x];
|
||
|
#else
|
||
|
return pgm_read_byte(&_NeoPixelGammaTable[x]);
|
||
|
#endif
|
||
|
}
|
||
|
/*!
|
||
|
@brief Convert separate red, green and blue values into a single
|
||
|
"packed" 32-bit RGB color.
|
||
|
@param r Red brightness, 0 to 255.
|
||
|
@param g Green brightness, 0 to 255.
|
||
|
@param b Blue brightness, 0 to 255.
|
||
|
@return 32-bit packed RGB value, which can then be assigned to a
|
||
|
variable for later use or passed to the setPixelColor()
|
||
|
function. Packed RGB format is predictable, regardless of
|
||
|
LED strand color order.
|
||
|
*/
|
||
|
static uint32_t Color(uint8_t r, uint8_t g, uint8_t b) {
|
||
|
return ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
|
||
|
}
|
||
|
/*!
|
||
|
@brief Convert separate red, green, blue and white values into a
|
||
|
single "packed" 32-bit WRGB color.
|
||
|
@param r Red brightness, 0 to 255.
|
||
|
@param g Green brightness, 0 to 255.
|
||
|
@param b Blue brightness, 0 to 255.
|
||
|
@param w White brightness, 0 to 255.
|
||
|
@return 32-bit packed WRGB value, which can then be assigned to a
|
||
|
variable for later use or passed to the setPixelColor()
|
||
|
function. Packed WRGB format is predictable, regardless of
|
||
|
LED strand color order.
|
||
|
*/
|
||
|
static uint32_t Color(uint8_t r, uint8_t g, uint8_t b, uint8_t w) {
|
||
|
return ((uint32_t)w << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
|
||
|
}
|
||
|
static uint32_t ColorHSV(uint16_t hue, uint8_t sat=255, uint8_t val=255);
|
||
|
/*!
|
||
|
@brief A gamma-correction function for 32-bit packed RGB or WRGB
|
||
|
colors. Makes color transitions appear more perceptially
|
||
|
correct.
|
||
|
@param x 32-bit packed RGB or WRGB color.
|
||
|
@return Gamma-adjusted packed color, can then be passed in one of the
|
||
|
setPixelColor() functions. Like gamma8(), this uses a fixed
|
||
|
gamma correction exponent of 2.6, which seems reasonably okay
|
||
|
for average NeoPixels in average tasks. If you need finer
|
||
|
control you'll need to provide your own gamma-correction
|
||
|
function instead.
|
||
|
*/
|
||
|
static uint32_t gamma32(uint32_t x);
|
||
|
|
||
|
#if (!defined(DISABLEMILLIS) && !defined(MILLIS_USE_TIMERRTC) && !defined(MILLIS_USE_TIMERRTC_XTAL) && !defined(MILLIS_USE_TIMERRTC_XOSC))
|
||
|
inline bool canShow(void) { return (micros() - endTime) >= 50L; }
|
||
|
#else
|
||
|
inline bool canShow(void) {return 1;} //we don't have micros here;
|
||
|
#endif
|
||
|
|
||
|
|
||
|
private:
|
||
|
|
||
|
uint16_t
|
||
|
numLEDs, // Number of RGB LEDs in strip
|
||
|
numBytes; // Size of 'pixels' buffer below (3 or 4 bytes/pixel)
|
||
|
int8_t
|
||
|
pin; // Output pin number (-1 if not yet set)
|
||
|
uint8_t
|
||
|
brightness,
|
||
|
*pixels, // Holds LED color values (3 or 4 bytes each)
|
||
|
rOffset, // Index of red byte within each 3- or 4-byte pixel
|
||
|
gOffset, // Index of green byte
|
||
|
bOffset, // Index of blue byte
|
||
|
wOffset; // Index of white byte (same as rOffset if no white)
|
||
|
uint32_t
|
||
|
endTime; // Latch timing reference
|
||
|
volatile uint8_t
|
||
|
*port; // Output PORT register
|
||
|
uint8_t
|
||
|
pinMask; // Output PORT bitmask
|
||
|
|
||
|
};
|
||
|
|
||
|
#endif // TINYNEOPIXEL_H
|