// This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. #include "DallasTemperature.h" #if ARDUINO >= 100 #include "Arduino.h" #else extern "C" { #include "WConstants.h" } #endif // OneWire commands #define STARTCONVO 0x44 // Tells device to take a temperature reading and put it on the scratchpad #define COPYSCRATCH 0x48 // Copy EEPROM #define READSCRATCH 0xBE // Read EEPROM #define WRITESCRATCH 0x4E // Write to EEPROM #define RECALLSCRATCH 0xB8 // Reload from last known #define READPOWERSUPPLY 0xB4 // Determine if device needs parasite power #define ALARMSEARCH 0xEC // Query bus for devices with an alarm condition // Scratchpad locations #define TEMP_LSB 0 #define TEMP_MSB 1 #define HIGH_ALARM_TEMP 2 #define LOW_ALARM_TEMP 3 #define CONFIGURATION 4 #define INTERNAL_BYTE 5 #define COUNT_REMAIN 6 #define COUNT_PER_C 7 #define SCRATCHPAD_CRC 8 // Device resolution #define TEMP_9_BIT 0x1F // 9 bit #define TEMP_10_BIT 0x3F // 10 bit #define TEMP_11_BIT 0x5F // 11 bit #define TEMP_12_BIT 0x7F // 12 bit #define NO_ALARM_HANDLER ((AlarmHandler *)0) DallasTemperature::DallasTemperature() { #if REQUIRESALARMS setAlarmHandler(NO_ALARM_HANDLER); #endif } DallasTemperature::DallasTemperature(OneWire* _oneWire) { setOneWire(_oneWire); #if REQUIRESALARMS setAlarmHandler(NO_ALARM_HANDLER); #endif } bool DallasTemperature::validFamily(const uint8_t* deviceAddress) { switch (deviceAddress[0]) { case DS18S20MODEL: case DS18B20MODEL: case DS1822MODEL: case DS1825MODEL: case DS28EA00MODEL: return true; default: return false; } } void DallasTemperature::setOneWire(OneWire* _oneWire) { _wire = _oneWire; devices = 0; ds18Count = 0; parasite = false; bitResolution = 9; waitForConversion = true; checkForConversion = true; } // initialise the bus void DallasTemperature::begin(void) { DeviceAddress deviceAddress; _wire->reset_search(); devices = 0; // Reset the number of devices when we enumerate wire devices ds18Count = 0; // Reset number of DS18xxx Family devices while (_wire->search(deviceAddress)) { if (validAddress(deviceAddress)) { if (!parasite && readPowerSupply(deviceAddress)) parasite = true; bitResolution = max(bitResolution, getResolution(deviceAddress)); devices++; if (validFamily(deviceAddress)) { ds18Count++; } } } } // returns the number of devices found on the bus uint8_t DallasTemperature::getDeviceCount(void) { return devices; } uint8_t DallasTemperature::getDS18Count(void) { return ds18Count; } // returns true if address is valid bool DallasTemperature::validAddress(const uint8_t* deviceAddress) { return (_wire->crc8(deviceAddress, 7) == deviceAddress[7]); } // finds an address at a given index on the bus // returns true if the device was found bool DallasTemperature::getAddress(uint8_t* deviceAddress, uint8_t index) { uint8_t depth = 0; _wire->reset_search(); while (depth <= index && _wire->search(deviceAddress)) { if (depth == index && validAddress(deviceAddress)) return true; depth++; } return false; } // attempt to determine if the device at the given address is connected to the bus bool DallasTemperature::isConnected(const uint8_t* deviceAddress) { ScratchPad scratchPad; return isConnected(deviceAddress, scratchPad); } // attempt to determine if the device at the given address is connected to the bus // also allows for updating the read scratchpad bool DallasTemperature::isConnected(const uint8_t* deviceAddress, uint8_t* scratchPad) { bool b = readScratchPad(deviceAddress, scratchPad); return b && (_wire->crc8(scratchPad, 8) == scratchPad[SCRATCHPAD_CRC]); } bool DallasTemperature::readScratchPad(const uint8_t* deviceAddress, uint8_t* scratchPad) { // send the reset command and fail fast int b = _wire->reset(); if (b == 0) return false; _wire->select(deviceAddress); _wire->write(READSCRATCH); // Read all registers in a simple loop // byte 0: temperature LSB // byte 1: temperature MSB // byte 2: high alarm temp // byte 3: low alarm temp // byte 4: DS18S20: store for crc // DS18B20 & DS1822: configuration register // byte 5: internal use & crc // byte 6: DS18S20: COUNT_REMAIN // DS18B20 & DS1822: store for crc // byte 7: DS18S20: COUNT_PER_C // DS18B20 & DS1822: store for crc // byte 8: SCRATCHPAD_CRC for (uint8_t i = 0; i < 9; i++) { scratchPad[i] = _wire->read(); } b = _wire->reset(); return (b == 1); } void DallasTemperature::writeScratchPad(const uint8_t* deviceAddress, const uint8_t* scratchPad) { _wire->reset(); _wire->select(deviceAddress); _wire->write(WRITESCRATCH); _wire->write(scratchPad[HIGH_ALARM_TEMP]); // high alarm temp _wire->write(scratchPad[LOW_ALARM_TEMP]); // low alarm temp // DS1820 and DS18S20 have no configuration register if (deviceAddress[0] != DS18S20MODEL) _wire->write(scratchPad[CONFIGURATION]); _wire->reset(); // save the newly written values to eeprom _wire->select(deviceAddress); _wire->write(COPYSCRATCH, parasite); delay(20); // <--- added 20ms delay to allow 10ms long EEPROM write operation (as specified by datasheet) if (parasite) delay(10); // 10ms delay _wire->reset(); } bool DallasTemperature::readPowerSupply(const uint8_t* deviceAddress) { bool ret = false; _wire->reset(); _wire->select(deviceAddress); _wire->write(READPOWERSUPPLY); if (_wire->read_bit() == 0) ret = true; _wire->reset(); return ret; } // set resolution of all devices to 9, 10, 11, or 12 bits // if new resolution is out of range, it is constrained. void DallasTemperature::setResolution(uint8_t newResolution) { bitResolution = constrain(newResolution, 9, 12); DeviceAddress deviceAddress; for (int i = 0; i < devices; i++) { getAddress(deviceAddress, i); setResolution(deviceAddress, bitResolution, true); } } // set resolution of a device to 9, 10, 11, or 12 bits // if new resolution is out of range, 9 bits is used. bool DallasTemperature::setResolution(const uint8_t* deviceAddress, uint8_t newResolution, bool skipGlobalBitResolutionCalculation) { // ensure same behavior as setResolution(uint8_t newResolution) newResolution = constrain(newResolution, 9, 12); // return when stored value == new value if (getResolution(deviceAddress) == newResolution) return true; ScratchPad scratchPad; if (isConnected(deviceAddress, scratchPad)) { // DS1820 and DS18S20 have no resolution configuration register if (deviceAddress[0] != DS18S20MODEL) { switch (newResolution) { case 12: scratchPad[CONFIGURATION] = TEMP_12_BIT; break; case 11: scratchPad[CONFIGURATION] = TEMP_11_BIT; break; case 10: scratchPad[CONFIGURATION] = TEMP_10_BIT; break; case 9: default: scratchPad[CONFIGURATION] = TEMP_9_BIT; break; } writeScratchPad(deviceAddress, scratchPad); // without calculation we can always set it to max bitResolution = max(bitResolution, newResolution); if (!skipGlobalBitResolutionCalculation && (bitResolution > newResolution)) { bitResolution = newResolution; DeviceAddress deviceAddr; for (int i = 0; i < devices; i++) { getAddress(deviceAddr, i); bitResolution = max(bitResolution, getResolution(deviceAddr)); } } } return true; // new value set } return false; } // returns the global resolution uint8_t DallasTemperature::getResolution() { return bitResolution; } // returns the current resolution of the device, 9-12 // returns 0 if device not found uint8_t DallasTemperature::getResolution(const uint8_t* deviceAddress) { // DS1820 and DS18S20 have no resolution configuration register if (deviceAddress[0] == DS18S20MODEL) return 12; ScratchPad scratchPad; if (isConnected(deviceAddress, scratchPad)) { switch (scratchPad[CONFIGURATION]) { case TEMP_12_BIT: return 12; case TEMP_11_BIT: return 11; case TEMP_10_BIT: return 10; case TEMP_9_BIT: return 9; } } return 0; } // sets the value of the waitForConversion flag // TRUE : function requestTemperature() etc returns when conversion is ready // FALSE: function requestTemperature() etc returns immediately (USE WITH CARE!!) // (1) programmer has to check if the needed delay has passed // (2) but the application can do meaningful things in that time void DallasTemperature::setWaitForConversion(bool flag) { waitForConversion = flag; } // gets the value of the waitForConversion flag bool DallasTemperature::getWaitForConversion() { return waitForConversion; } // sets the value of the checkForConversion flag // TRUE : function requestTemperature() etc will 'listen' to an IC to determine whether a conversion is complete // FALSE: function requestTemperature() etc will wait a set time (worst case scenario) for a conversion to complete void DallasTemperature::setCheckForConversion(bool flag) { checkForConversion = flag; } // gets the value of the waitForConversion flag bool DallasTemperature::getCheckForConversion() { return checkForConversion; } bool DallasTemperature::isConversionComplete() { uint8_t b = _wire->read_bit(); return (b == 1); } // sends command for all devices on the bus to perform a temperature conversion void DallasTemperature::requestTemperatures() { _wire->reset(); _wire->skip(); _wire->write(STARTCONVO, parasite); // ASYNC mode? if (!waitForConversion) return; blockTillConversionComplete(bitResolution); } // sends command for one device to perform a temperature by address // returns FALSE if device is disconnected // returns TRUE otherwise bool DallasTemperature::requestTemperaturesByAddress( const uint8_t* deviceAddress) { uint8_t bitResolution = getResolution(deviceAddress); if (bitResolution == 0) { return false; //Device disconnected } _wire->reset(); _wire->select(deviceAddress); _wire->write(STARTCONVO, parasite); // ASYNC mode? if (!waitForConversion) return true; blockTillConversionComplete(bitResolution); return true; } // Continue to check if the IC has responded with a temperature void DallasTemperature::blockTillConversionComplete(uint8_t bitResolution) { int delms = millisToWaitForConversion(bitResolution); if (checkForConversion && !parasite) { unsigned long now = millis(); while (!isConversionComplete() && (millis() - delms < now)) ; } else { delay(delms); } } // returns number of milliseconds to wait till conversion is complete (based on IC datasheet) int16_t DallasTemperature::millisToWaitForConversion(uint8_t bitResolution) { switch (bitResolution) { case 9: return 94; case 10: return 188; case 11: return 375; default: return 750; } } // sends command for one device to perform a temp conversion by index bool DallasTemperature::requestTemperaturesByIndex(uint8_t deviceIndex) { DeviceAddress deviceAddress; getAddress(deviceAddress, deviceIndex); return requestTemperaturesByAddress(deviceAddress); } // Fetch temperature for device index float DallasTemperature::getTempCByIndex(uint8_t deviceIndex) { DeviceAddress deviceAddress; if (!getAddress(deviceAddress, deviceIndex)) { return DEVICE_DISCONNECTED_C; } return getTempC((uint8_t*) deviceAddress); } // Fetch temperature for device index float DallasTemperature::getTempFByIndex(uint8_t deviceIndex) { DeviceAddress deviceAddress; if (!getAddress(deviceAddress, deviceIndex)) { return DEVICE_DISCONNECTED_F; } return getTempF((uint8_t*) deviceAddress); } // reads scratchpad and returns fixed-point temperature, scaling factor 2^-7 int16_t DallasTemperature::calculateTemperature(const uint8_t* deviceAddress, uint8_t* scratchPad) { int16_t fpTemperature = (((int16_t) scratchPad[TEMP_MSB]) << 11) | (((int16_t) scratchPad[TEMP_LSB]) << 3); /* DS1820 and DS18S20 have a 9-bit temperature register. Resolutions greater than 9-bit can be calculated using the data from the temperature, and COUNT REMAIN and COUNT PER °C registers in the scratchpad. The resolution of the calculation depends on the model. While the COUNT PER °C register is hard-wired to 16 (10h) in a DS18S20, it changes with temperature in DS1820. After reading the scratchpad, the TEMP_READ value is obtained by truncating the 0.5°C bit (bit 0) from the temperature data. The extended resolution temperature can then be calculated using the following equation: COUNT_PER_C - COUNT_REMAIN TEMPERATURE = TEMP_READ - 0.25 + -------------------------- COUNT_PER_C Hagai Shatz simplified this to integer arithmetic for a 12 bits value for a DS18S20, and James Cameron added legacy DS1820 support. See - http://myarduinotoy.blogspot.co.uk/2013/02/12bit-result-from-ds18s20.html */ if (deviceAddress[0] == DS18S20MODEL) { fpTemperature = ((fpTemperature & 0xfff0) << 3) - 16 + (((scratchPad[COUNT_PER_C] - scratchPad[COUNT_REMAIN]) << 7) / scratchPad[COUNT_PER_C]); } return fpTemperature; } // returns temperature in 1/128 degrees C or DEVICE_DISCONNECTED_RAW if the // device's scratch pad cannot be read successfully. // the numeric value of DEVICE_DISCONNECTED_RAW is defined in // DallasTemperature.h. It is a large negative number outside the // operating range of the device int16_t DallasTemperature::getTemp(const uint8_t* deviceAddress) { ScratchPad scratchPad; if (isConnected(deviceAddress, scratchPad)) return calculateTemperature(deviceAddress, scratchPad); return DEVICE_DISCONNECTED_RAW; } // returns temperature in degrees C or DEVICE_DISCONNECTED_C if the // device's scratch pad cannot be read successfully. // the numeric value of DEVICE_DISCONNECTED_C is defined in // DallasTemperature.h. It is a large negative number outside the // operating range of the device float DallasTemperature::getTempC(const uint8_t* deviceAddress) { return rawToCelsius(getTemp(deviceAddress)); } // returns temperature in degrees F or DEVICE_DISCONNECTED_F if the // device's scratch pad cannot be read successfully. // the numeric value of DEVICE_DISCONNECTED_F is defined in // DallasTemperature.h. It is a large negative number outside the // operating range of the device float DallasTemperature::getTempF(const uint8_t* deviceAddress) { return rawToFahrenheit(getTemp(deviceAddress)); } // returns true if the bus requires parasite power bool DallasTemperature::isParasitePowerMode(void) { return parasite; } // IF alarm is not used one can store a 16 bit int of userdata in the alarm // registers. E.g. an ID of the sensor. // See github issue #29 // note if device is not connected it will fail writing the data. void DallasTemperature::setUserData(const uint8_t* deviceAddress, int16_t data) { // return when stored value == new value if (getUserData(deviceAddress) == data) return; ScratchPad scratchPad; if (isConnected(deviceAddress, scratchPad)) { scratchPad[HIGH_ALARM_TEMP] = data >> 8; scratchPad[LOW_ALARM_TEMP] = data & 255; writeScratchPad(deviceAddress, scratchPad); } } int16_t DallasTemperature::getUserData(const uint8_t* deviceAddress) { int16_t data = 0; ScratchPad scratchPad; if (isConnected(deviceAddress, scratchPad)) { data = scratchPad[HIGH_ALARM_TEMP] << 8; data += scratchPad[LOW_ALARM_TEMP]; } return data; } // note If address cannot be found no error will be reported. int16_t DallasTemperature::getUserDataByIndex(uint8_t deviceIndex) { DeviceAddress deviceAddress; getAddress(deviceAddress, deviceIndex); return getUserData((uint8_t*) deviceAddress); } void DallasTemperature::setUserDataByIndex(uint8_t deviceIndex, int16_t data) { DeviceAddress deviceAddress; getAddress(deviceAddress, deviceIndex); setUserData((uint8_t*) deviceAddress, data); } // Convert float Celsius to Fahrenheit float DallasTemperature::toFahrenheit(float celsius) { return (celsius * 1.8) + 32; } // Convert float Fahrenheit to Celsius float DallasTemperature::toCelsius(float fahrenheit) { return (fahrenheit - 32) * 0.555555556; } // convert from raw to Celsius float DallasTemperature::rawToCelsius(int16_t raw) { if (raw <= DEVICE_DISCONNECTED_RAW) return DEVICE_DISCONNECTED_C; // C = RAW/128 return (float) raw * 0.0078125; } // convert from raw to Fahrenheit float DallasTemperature::rawToFahrenheit(int16_t raw) { if (raw <= DEVICE_DISCONNECTED_RAW) return DEVICE_DISCONNECTED_F; // C = RAW/128 // F = (C*1.8)+32 = (RAW/128*1.8)+32 = (RAW*0.0140625)+32 return ((float) raw * 0.0140625) + 32; } #if REQUIRESALARMS /* ALARMS: TH and TL Register Format BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 S 2^6 2^5 2^4 2^3 2^2 2^1 2^0 Only bits 11 through 4 of the temperature register are used in the TH and TL comparison since TH and TL are 8-bit registers. If the measured temperature is lower than or equal to TL or higher than or equal to TH, an alarm condition exists and an alarm flag is set inside the DS18B20. This flag is updated after every temperature measurement; therefore, if the alarm condition goes away, the flag will be turned off after the next temperature conversion. */ // sets the high alarm temperature for a device in degrees Celsius // accepts a float, but the alarm resolution will ignore anything // after a decimal point. valid range is -55C - 125C void DallasTemperature::setHighAlarmTemp(const uint8_t* deviceAddress, int8_t celsius) { // return when stored value == new value if (getHighAlarmTemp(deviceAddress) == celsius) return; // make sure the alarm temperature is within the device's range if (celsius > 125) celsius = 125; else if (celsius < -55) celsius = -55; ScratchPad scratchPad; if (isConnected(deviceAddress, scratchPad)) { scratchPad[HIGH_ALARM_TEMP] = (uint8_t) celsius; writeScratchPad(deviceAddress, scratchPad); } } // sets the low alarm temperature for a device in degrees Celsius // accepts a float, but the alarm resolution will ignore anything // after a decimal point. valid range is -55C - 125C void DallasTemperature::setLowAlarmTemp(const uint8_t* deviceAddress, int8_t celsius) { // return when stored value == new value if (getLowAlarmTemp(deviceAddress) == celsius) return; // make sure the alarm temperature is within the device's range if (celsius > 125) celsius = 125; else if (celsius < -55) celsius = -55; ScratchPad scratchPad; if (isConnected(deviceAddress, scratchPad)) { scratchPad[LOW_ALARM_TEMP] = (uint8_t) celsius; writeScratchPad(deviceAddress, scratchPad); } } // returns a int8_t with the current high alarm temperature or // DEVICE_DISCONNECTED for an address int8_t DallasTemperature::getHighAlarmTemp(const uint8_t* deviceAddress) { ScratchPad scratchPad; if (isConnected(deviceAddress, scratchPad)) return (int8_t) scratchPad[HIGH_ALARM_TEMP]; return DEVICE_DISCONNECTED_C; } // returns a int8_t with the current low alarm temperature or // DEVICE_DISCONNECTED for an address int8_t DallasTemperature::getLowAlarmTemp(const uint8_t* deviceAddress) { ScratchPad scratchPad; if (isConnected(deviceAddress, scratchPad)) return (int8_t) scratchPad[LOW_ALARM_TEMP]; return DEVICE_DISCONNECTED_C; } // resets internal variables used for the alarm search void DallasTemperature::resetAlarmSearch() { alarmSearchJunction = -1; alarmSearchExhausted = 0; for (uint8_t i = 0; i < 7; i++) { alarmSearchAddress[i] = 0; } } // This is a modified version of the OneWire::search method. // // Also added the OneWire search fix documented here: // http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295 // // Perform an alarm search. If this function returns a '1' then it has // enumerated the next device and you may retrieve the ROM from the // OneWire::address variable. If there are no devices, no further // devices, or something horrible happens in the middle of the // enumeration then a 0 is returned. If a new device is found then // its address is copied to newAddr. Use // DallasTemperature::resetAlarmSearch() to start over. bool DallasTemperature::alarmSearch(uint8_t* newAddr) { uint8_t i; int8_t lastJunction = -1; uint8_t done = 1; if (alarmSearchExhausted) return false; if (!_wire->reset()) return false; // send the alarm search command _wire->write(0xEC, 0); for (i = 0; i < 64; i++) { uint8_t a = _wire->read_bit(); uint8_t nota = _wire->read_bit(); uint8_t ibyte = i / 8; uint8_t ibit = 1 << (i & 7); // I don't think this should happen, this means nothing responded, but maybe if // something vanishes during the search it will come up. if (a && nota) return false; if (!a && !nota) { if (i == alarmSearchJunction) { // this is our time to decide differently, we went zero last time, go one. a = 1; alarmSearchJunction = lastJunction; } else if (i < alarmSearchJunction) { // take whatever we took last time, look in address if (alarmSearchAddress[ibyte] & ibit) { a = 1; } else { // Only 0s count as pending junctions, we've already exhausted the 0 side of 1s a = 0; done = 0; lastJunction = i; } } else { // we are blazing new tree, take the 0 a = 0; alarmSearchJunction = i; done = 0; } // OneWire search fix // See: http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295 } if (a) alarmSearchAddress[ibyte] |= ibit; else alarmSearchAddress[ibyte] &= ~ibit; _wire->write_bit(a); } if (done) alarmSearchExhausted = 1; for (i = 0; i < 8; i++) newAddr[i] = alarmSearchAddress[i]; return true; } // returns true if device address might have an alarm condition // (only an alarm search can verify this) bool DallasTemperature::hasAlarm(const uint8_t* deviceAddress) { ScratchPad scratchPad; if (isConnected(deviceAddress, scratchPad)) { int8_t temp = calculateTemperature(deviceAddress, scratchPad) >> 7; // check low alarm if (temp <= (int8_t) scratchPad[LOW_ALARM_TEMP]) return true; // check high alarm if (temp >= (int8_t) scratchPad[HIGH_ALARM_TEMP]) return true; } // no alarm return false; } // returns true if any device is reporting an alarm condition on the bus bool DallasTemperature::hasAlarm(void) { DeviceAddress deviceAddress; resetAlarmSearch(); return alarmSearch(deviceAddress); } // runs the alarm handler for all devices returned by alarmSearch() // unless there no _AlarmHandler exist. void DallasTemperature::processAlarms(void) { if (!hasAlarmHandler()) { return; } resetAlarmSearch(); DeviceAddress alarmAddr; while (alarmSearch(alarmAddr)) { if (validAddress(alarmAddr)) { _AlarmHandler(alarmAddr); } } } // sets the alarm handler void DallasTemperature::setAlarmHandler(const AlarmHandler *handler) { _AlarmHandler = handler; } // checks if AlarmHandler has been set. bool DallasTemperature::hasAlarmHandler() { return _AlarmHandler != NO_ALARM_HANDLER; } #endif #if REQUIRESNEW // MnetCS - Allocates memory for DallasTemperature. Allows us to instance a new object void* DallasTemperature::operator new(unsigned int size) { // Implicit NSS obj size void * p;// void pointer p = malloc(size);// Allocate memory memset((DallasTemperature*)p,0,size);// Initialise memory //!!! CANT EXPLICITLY CALL CONSTRUCTOR - workaround by using an init() methodR - workaround by using an init() method return (DallasTemperature*) p;// Cast blank region to NSS pointer } // MnetCS 2009 - Free the memory used by this instance void DallasTemperature::operator delete(void* p) { DallasTemperature* pNss = (DallasTemperature*) p; // Cast to NSS pointer pNss->~DallasTemperature();// Destruct the object free(p);// Free the memory } #endif