1
0
Fork 0
mirror of https://github.com/seiichiro0185/sailotp.git synced 2024-07-03 02:10:33 +00:00
harbour-sailotp/src/qzxing/zxing/oned/ITFReader.cpp

368 lines
13 KiB
C++

// -*- mode:c++; tab-width:2; indent-tabs-mode:nil; c-basic-offset:2 -*-
/*
* Copyright 2010 ZXing authors All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "ITFReader.h"
#include <zxing/oned/OneDResultPoint.h>
#include <zxing/common/Array.h>
#include <zxing/ReaderException.h>
#include <math.h>
namespace zxing {
namespace oned {
static const int W = 3; // Pixel width of a wide line
static const int N = 1; // Pixed width of a narrow line
const int DEFAULT_ALLOWED_LENGTHS_LEN = 10;
const int DEFAULT_ALLOWED_LENGTHS[DEFAULT_ALLOWED_LENGTHS_LEN] = { 44, 24, 20, 18, 16, 14, 12, 10, 8, 6 };
/**
* Start/end guard pattern.
*
* Note: The end pattern is reversed because the row is reversed before
* searching for the END_PATTERN
*/
static const int START_PATTERN_LEN = 4;
static const int START_PATTERN[START_PATTERN_LEN] = {N, N, N, N};
static const int END_PATTERN_REVERSED_LEN = 3;
static const int END_PATTERN_REVERSED[END_PATTERN_REVERSED_LEN] = {N, N, W};
/**
* Patterns of Wide / Narrow lines to indicate each digit
*/
static const int PATTERNS_LEN = 10;
static const int PATTERNS[PATTERNS_LEN][5] = {
{N, N, W, W, N}, // 0
{W, N, N, N, W}, // 1
{N, W, N, N, W}, // 2
{W, W, N, N, N}, // 3
{N, N, W, N, W}, // 4
{W, N, W, N, N}, // 5
{N, W, W, N, N}, // 6
{N, N, N, W, W}, // 7
{W, N, N, W, N}, // 8
{N, W, N, W, N} // 9
};
ITFReader::ITFReader() : narrowLineWidth(-1) {
}
Ref<Result> ITFReader::decodeRow(int rowNumber, Ref<BitArray> row) {
int* startRange = 0;
int* endRange = 0;
try {
// Find out where the Middle section (payload) starts & ends
startRange = decodeStart(row);
endRange = decodeEnd(row);
std::string tmpResult;
decodeMiddle(row, startRange[1], endRange[0], tmpResult);
// To avoid false positives with 2D barcodes (and other patterns), make
// an assumption that the decoded string must be a known length
int length = tmpResult.length();
bool lengthOK = false;
for (int i = 0; i < DEFAULT_ALLOWED_LENGTHS_LEN; i++) {
if (length == DEFAULT_ALLOWED_LENGTHS[i]) {
lengthOK = true;
break;
}
}
if (!lengthOK) {
throw ReaderException("not enough characters count");
}
Ref<String> resultString(new String(tmpResult));
std::vector< Ref<ResultPoint> > resultPoints(2);
Ref<OneDResultPoint> resultPoint1(new OneDResultPoint(startRange[1], (float) rowNumber));
Ref<OneDResultPoint> resultPoint2(new OneDResultPoint(endRange[0], (float) rowNumber));
resultPoints[0] = resultPoint1;
resultPoints[1] = resultPoint2;
delete [] startRange;
delete [] endRange;
ArrayRef<unsigned char> resultBytes(1);
return Ref<Result>(new Result(resultString, resultBytes, resultPoints, BarcodeFormat_ITF));
} catch (ReaderException const& re) {
delete [] startRange;
delete [] endRange;
return Ref<Result>();
}
}
/**
* @param row row of black/white values to search
* @param payloadStart offset of start pattern
* @param resultString {@link StringBuffer} to append decoded chars to
* @throws ReaderException if decoding could not complete successfully
*/
void ITFReader::decodeMiddle(Ref<BitArray> row, int payloadStart, int payloadEnd,
std::string& resultString) {
// Digits are interleaved in pairs - 5 black lines for one digit, and the
// 5
// interleaved white lines for the second digit.
// Therefore, need to scan 10 lines and then
// split these into two arrays
int counterDigitPairLen = 10;
int counterDigitPair[counterDigitPairLen];
for (int i=0; i<counterDigitPairLen; i++) {
counterDigitPair[i] = 0;
}
int counterBlack[5];
int counterWhite[5];
for (int i=0; i<5; i++) {
counterBlack[i] = 0;
counterWhite[i] = 0;
}
while (payloadStart < payloadEnd) {
// Get 10 runs of black/white.
if (!recordPattern(row, payloadStart, counterDigitPair, counterDigitPairLen)) {
throw ReaderException("");
}
// Split them into each array
for (int k = 0; k < 5; k++) {
int twoK = k << 1;
counterBlack[k] = counterDigitPair[twoK];
counterWhite[k] = counterDigitPair[twoK + 1];
}
int bestMatch = decodeDigit(counterBlack, 5);
resultString.append(1, (char) ('0' + bestMatch));
bestMatch = decodeDigit(counterWhite, 5);
resultString.append(1, (char) ('0' + bestMatch));
for (int i = 0; i < counterDigitPairLen; i++) {
payloadStart += counterDigitPair[i];
}
}
}
/**
* Identify where the start of the middle / payload section starts.
*
* @param row row of black/white values to search
* @return Array, containing index of start of 'start block' and end of
* 'start block'
* @throws ReaderException
*/
int* ITFReader::decodeStart(Ref<BitArray> row) {
int endStart = skipWhiteSpace(row);
int* startPattern = 0;
try {
startPattern = findGuardPattern(row, endStart, START_PATTERN, START_PATTERN_LEN);
// Determine the width of a narrow line in pixels. We can do this by
// getting the width of the start pattern and dividing by 4 because its
// made up of 4 narrow lines.
narrowLineWidth = (startPattern[1] - startPattern[0]) >> 2;
validateQuietZone(row, startPattern[0]);
return startPattern;
} catch (ReaderException const& re) {
delete [] startPattern;
throw re;
}
}
/**
* Identify where the end of the middle / payload section ends.
*
* @param row row of black/white values to search
* @return Array, containing index of start of 'end block' and end of 'end
* block'
* @throws ReaderException
*/
int* ITFReader::decodeEnd(Ref<BitArray> row) {
// For convenience, reverse the row and then
// search from 'the start' for the end block
row->reverse();
int* endPattern = 0;
try {
int endStart = skipWhiteSpace(row);
endPattern = findGuardPattern(row, endStart, END_PATTERN_REVERSED, END_PATTERN_REVERSED_LEN);
// The start & end patterns must be pre/post fixed by a quiet zone. This
// zone must be at least 10 times the width of a narrow line.
// ref: http://www.barcode-1.net/i25code.html
validateQuietZone(row, endPattern[0]);
// Now recalculate the indices of where the 'endblock' starts & stops to
// accommodate
// the reversed nature of the search
int temp = endPattern[0];
endPattern[0] = row->getSize() - endPattern[1];
endPattern[1] = row->getSize() - temp;
row->reverse();
return endPattern;
} catch (ReaderException const& re) {
delete [] endPattern;
row->reverse();
throw re;
}
}
/**
* The start & end patterns must be pre/post fixed by a quiet zone. This
* zone must be at least 10 times the width of a narrow line. Scan back until
* we either get to the start of the barcode or match the necessary number of
* quiet zone pixels.
*
* Note: Its assumed the row is reversed when using this method to find
* quiet zone after the end pattern.
*
* ref: http://www.barcode-1.net/i25code.html
*
* @param row bit array representing the scanned barcode.
* @param startPattern index into row of the start or end pattern.
* @throws ReaderException if the quiet zone cannot be found, a ReaderException is thrown.
*/
void ITFReader::validateQuietZone(Ref<BitArray> row, int startPattern) {
(void)row;
(void)startPattern;
//#pragma mark needs some corrections
// int quietCount = narrowLineWidth * 10; // expect to find this many pixels of quiet zone
//
// for (int i = startPattern - 1; quietCount > 0 && i >= 0; i--) {
// if (row->get(i)) {
// break;
// }
// quietCount--;
// }
// if (quietCount != 0) {
// // Unable to find the necessary number of quiet zone pixels.
// throw ReaderException("Unable to find the necessary number of quiet zone pixels");
// }
}
/**
* Skip all whitespace until we get to the first black line.
*
* @param row row of black/white values to search
* @return index of the first black line.
* @throws ReaderException Throws exception if no black lines are found in the row
*/
int ITFReader::skipWhiteSpace(Ref<BitArray> row) {
int width = row->getSize();
int endStart = 0;
while (endStart < width) {
if (row->get(endStart)) {
break;
}
endStart++;
}
if (endStart == width) {
throw ReaderException("");
}
return endStart;
}
/**
* @param row row of black/white values to search
* @param rowOffset position to start search
* @param pattern pattern of counts of number of black and white pixels that are
* being searched for as a pattern
* @return start/end horizontal offset of guard pattern, as an array of two
* ints
* @throws ReaderException if pattern is not found
*/
int* ITFReader::findGuardPattern(Ref<BitArray> row, int rowOffset, const int pattern[],
int patternLen) {
// TODO: This is very similar to implementation in UPCEANReader. Consider if they can be
// merged to a single method.
int patternLength = patternLen;
int counters[patternLength];
for (int i=0; i<patternLength; i++) {
counters[i] = 0;
}
int width = row->getSize();
bool isWhite = false;
int counterPosition = 0;
int patternStart = rowOffset;
for (int x = rowOffset; x < width; x++) {
bool pixel = row->get(x);
if (pixel ^ isWhite) {
counters[counterPosition]++;
} else {
if (counterPosition == patternLength - 1) {
if (patternMatchVariance(counters, patternLength, pattern,
MAX_INDIVIDUAL_VARIANCE) < MAX_AVG_VARIANCE) {
int* resultValue = new int[2];
resultValue[0] = patternStart;
resultValue[1] = x;
return resultValue;
}
patternStart += counters[0] + counters[1];
for (int y = 2; y < patternLength; y++) {
counters[y - 2] = counters[y];
}
counters[patternLength - 2] = 0;
counters[patternLength - 1] = 0;
counterPosition--;
} else {
counterPosition++;
}
counters[counterPosition] = 1;
isWhite = !isWhite;
}
}
throw ReaderException("");
}
/**
* Attempts to decode a sequence of ITF black/white lines into single
* digit.
*
* @param counters the counts of runs of observed black/white/black/... values
* @return The decoded digit
* @throws ReaderException if digit cannot be decoded
*/
int ITFReader::decodeDigit(int counters[], int countersLen){
unsigned int bestVariance = MAX_AVG_VARIANCE; // worst variance we'll accept
int bestMatch = -1;
int max = PATTERNS_LEN;
for (int i = 0; i < max; i++) {
int pattern[countersLen];
for(int ind = 0; ind<countersLen; ind++){
pattern[ind] = PATTERNS[i][ind];
}
unsigned int variance = patternMatchVariance(counters, countersLen, pattern,
MAX_INDIVIDUAL_VARIANCE);
if (variance < bestVariance) {
bestVariance = variance;
bestMatch = i;
}
}
if (bestMatch >= 0) {
return bestMatch;
} else {
throw ReaderException("digit didint found");
}
}
ITFReader::~ITFReader(){
}
}
}